# Public Key Cryptanalysis <br> Discrete Logarithms and Factorization 

## Christophe Petit <br> University of Oxford

## Discrete logarithms

- Given a cyclic group ( $G, \circ$ ) (written multiplicatively), a generator $g$ of $G$ and a second element $h \in G$, compute $k \in \mathbb{Z}_{|G|}$ such that $g^{k}=h$


## Discrete logarithms

- Given a cyclic group ( $G, \circ$ ) (written multiplicatively), a generator $g$ of $G$ and a second element $h \in G$, compute $k \in \mathbb{Z}_{|G|}$ such that $g^{k}=h$
- Trivial if $(G, \circ)=\left(\mathbb{F}_{p},+\right)$. Why ?
- Recently broken if $(G, \circ)=\left(\mathbb{F}_{2^{n}}^{*}, *\right)$ (more generally if characteristic is small)


## Discrete logarithms

- Given a cyclic group ( $G, \circ$ ) (written multiplicatively), a generator $g$ of $G$ and a second element $h \in G$, compute $k \in \mathbb{Z}_{|G|}$ such that $g^{k}=h$
- Trivial if $(G, \circ)=\left(\mathbb{F}_{p},+\right)$. Why ?
- Recently broken if $(G, \circ)=\left(\mathbb{F}_{2^{n}}^{*}, *\right)$ (more generally if characteristic is small)
- Believed to be hard (to different extents) for $G=\mathbb{F}_{p}^{*}$ and for (well-chosen) elliptic/hyperelliptic curve groups


## Integer factorization

- Given a composite number $n$, compute its (unique) factorization $n=\prod p_{i}^{e_{i}}$ where $p_{i}$ are prime numbers


## Integer factorization

- Given a composite number $n$, compute its (unique) factorization $n=\prod p_{i}^{e_{i}}$ where $p_{i}$ are prime numbers
- Equivalently (why?) : compute one non-trivial factor $p_{i}$
- Trivial if $n=p^{e}$
- Believed to be hard if $n=p q$ for well-chosen $p \neq q$


## RSA and Diffie-Hellman

- DLP broken implies Diffie-Hellman broken
- Factorization broken implies RSA broken


## RSA and Diffie-Hellman

- DLP broken implies Diffie-Hellman broken
- Factorization broken implies RSA broken
- We don't know whether DH broken implies DLP broken
- We don't know whether RSA broken implies factorization broken


## RSA and Diffie-Hellman

- DLP broken implies Diffie-Hellman broken
- Factorization broken implies RSA broken
- We don't know whether DH broken implies DLP broken
- We don't know whether RSA broken implies factorization broken
- Nevertheless, the best attacks against DH and RSA today are discrete log and factorization attacks


## Outline

Generic discrete logarithm algorithms
Discrete logarithms over finite fields
Elliptic curve discrete logarithms
Factorization algorithms
Some side-channel attacks

Lab and tutorial content

## References



- Introduction to Modern Cryptography, Chapter 8
- Algorithmic Cryptanalysis, Chapter 15

OXFORD

## Outline

Generic discrete logarithm algorithms

## Discrete logarithms over finite fields

Elliptic curve discrete logarithms
Factorization algorithms
Some side-channel attacks

Lab and tutorial content

OXFORD

## Generic attacks

- DLP is trivial in some groups
- DLP seems harder in other groups
- Best attacks in a particular group often rely on specific properties of the group


## Generic attacks

- DLP is trivial in some groups
- DLP seems harder in other groups
- Best attacks in a particular group often rely on specific properties of the group
- Can we find better groups?
- How hard can DLP be in the best (hardest) groups?


## Group isomorphisms

- Any cyclic group ( $G, 0$ ) of order $n$ can be seen as $\left(\mathbb{Z}_{n},+\right)$ in the following sense : there exists an invertible map $\varphi: G \rightarrow \mathbb{Z}_{n}$ such that $\forall x, y \in G$, we have

$$
\varphi(x \circ y)=\varphi(x)+\varphi(y)
$$

- Remark $\varphi$ does not need to be efficiently computable
- Example : let $g$ of order $p-1$ in $\mathbb{Z}_{p}^{*}$. Can define $\varphi$ as sending any $h \in G$ to $\varphi(h) \in \mathbb{Z}_{p-1}$ such that $h=g^{\varphi(h)}$.
- Let $x^{\prime}=\varphi(x)$ and $y^{\prime}=\varphi(y)$. We have
$\varphi^{-1}\left(x^{\prime}+y^{\prime}\right)=\varphi^{-1}(\varphi(x)+\varphi(y))=\varphi^{-1}(\varphi(x \circ y))=x \circ y=\varphi^{-1}\left(x^{\prime}\right) \circ \varphi^{-1}\left(y^{\prime}\right)$


## DLP in the generic group model

- A DLP instance is generated in $\left(\mathbb{Z}_{n},+\right)$, including a generator $g \in \mathbb{Z}_{n}$ and another element $h=k g \in \mathbb{Z}_{n}$
- A random invertible map $\theta: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ is chosen
- The map defines a group $\left(\mathbb{Z}_{n}, \circ\right)$ with

$$
x \circ y=\theta\left(\theta^{-1}(x)+\theta^{-1}(y)\right)
$$

- The attacker is NOT given $g, h$ nor $\theta$
- The attacker is given $\theta(g), \theta(h)$ and access to oracles
- $\mathcal{O}_{1}$ : on input $x, y$, return $\theta\left(\theta^{-1}(x)+\theta^{-1}(y)\right)$
- $\mathcal{O}_{2}$ : on input $x$, return $\theta\left(-\theta^{-1}(x)\right)$
- The attacker's goal is to compute $k$


## Generic group model

- As $\theta$ is random, there is no special property of the group that can be exploited
- $n$ itself is sometimes hidden, and the attacker just receives bitstrings instead of $\mathbb{Z}_{n}$ elements (the size of $n$ cannot be hidden)
- Some attacks are generic : they work for any group This includes exhaustive search, BSGS, Pollard's rho
- There exist much better attacks for finite fields
- Still no better attack for (well-chosen) elliptic curves


## Exhaustive search

- Given $g, h \in G$ do the following

1: $k \leftarrow 1 ; h^{\prime} \leftarrow g$
2: if $h^{\prime}=h$ then
3: return $k$
4: else
5: $\quad k \leftarrow k+1 ; h^{\prime} \leftarrow h^{\prime} g$
6: Go to Step 2
7: end if

- Generic algorithm
- Time complexity $|G|$ in the worst case, $|G| / 2$ on average
- Can we do better?


## Baby step, giant step (BSGS)

- Let $h=g^{k}$. You want to compute $k$.


## Baby step, giant step (BSGS)

- Let $h=g^{k}$. You want to compute $k$.
- Let $N^{\prime}=\lceil\sqrt{|G|}\rceil$
- There exist $0 \leq i, j<N^{\prime}$ such that $k=j N^{\prime}+i$


## Baby step, giant step (BSGS)

- Let $h=g^{k}$. You want to compute $k$.
- Let $N^{\prime}=\lceil\sqrt{|G|}\rceil$
- There exist $0 \leq i, j<N^{\prime}$ such that $k=j N^{\prime}+i$

$$
h=g^{j N^{\prime}+i} \Leftrightarrow h g^{-j N^{\prime}}=g^{i}
$$

## Baby step, giant step (BSGS)

- Let $h=g^{k}$. You want to compute $k$.
- Let $N^{\prime}=\lceil\sqrt{|G|}\rceil$
- There exist $0 \leq i, j<N^{\prime}$ such that $k=j N^{\prime}+i$

$$
h=g^{j N^{\prime}+i} \Leftrightarrow h g^{-j N^{\prime}}=g^{i}
$$

- Compute $L_{B}:=\left\{g^{i} \mid i=0, \ldots, N^{\prime}-1\right\}$
- Compute $L_{G}:=\left\{h g^{-j N^{\prime}} \mid j=0, \ldots, N^{\prime}-1\right\}$


## Baby step, giant step (BSGS)

- Let $h=g^{k}$. You want to compute $k$.
- Let $N^{\prime}=\lceil\sqrt{|G|}\rceil$
- There exist $0 \leq i, j<N^{\prime}$ such that $k=j N^{\prime}+i$

$$
h=g^{j N^{\prime}+i} \Leftrightarrow h g^{-j N^{\prime}}=g^{i}
$$

- Compute $L_{B}:=\left\{g^{i} \mid i=0, \ldots, N^{\prime}-1\right\}$
- Compute $L_{G}:=\left\{h g^{-j N^{\prime}} \mid j=0, \ldots, N^{\prime}-1\right\}$
- Attack requires time and memory $O(\sqrt{|G|})$


## Birthday paradox

- Suppose there are $N_{2}$ people in a room. What is the probability that two people have the same birthday?
- How many people needed to have a probability larger than $50 \%$ ?


## Birthday paradox

- Suppose there are $N_{2}$ people in a room. What is the probability that two people have the same birthday?
- How many people needed to have a probability larger than $50 \%$ ?
- Answer is 23 :

$$
\operatorname{Pr}[\text { all distinct }]=1 \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \ldots \cdot \frac{365-22}{365}<\frac{1}{2}
$$

## Birthday paradox

- Suppose you choose $N_{2}$ elements randomly in a set of $N$ elements. What is the probability that two elements are equal ?
- How should $N_{2}$ be wrt $N$ to have a probability larger than 50\%?


## Birthday paradox

- Suppose you choose $N_{2}$ elements randomly in a set of $N$ elements. What is the probability that two elements are equal ?
- How should $N_{2}$ be wrt $N$ to have a probability larger than 50\%?
- Answer is $O(\sqrt{N})$ :

$$
\begin{aligned}
\operatorname{Pr}[\text { all distinct }] & =1 \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \cdot \ldots \cdot \frac{N-N_{2}+1}{N} \\
& \approx e^{-\frac{1}{N}} \cdot e^{-\frac{2}{N}} \cdot \ldots \cdot e^{-\frac{N_{2}-1}{N}} \\
& \approx e^{-\frac{N_{2}\left(N_{2}-1\right)}{N}}
\end{aligned}
$$

Taking $N_{2} \approx \sqrt{N}$ ensures $1-\operatorname{Pr}[$ all distinct $]$ constant

## Pollard's rho (iterative function)

- Define $G_{1}, G_{2}, G_{3}$ of about the same size such that $G=G_{1} \cup G_{2} \cup G_{3}$ and $G_{i} \cap G_{j}=\{ \}$
- Over $\mathbb{Z}_{p}^{*}$, can choose

$$
G_{1}=\{0, \ldots,\lfloor p / 3\rfloor\}
$$

$$
G_{2}=\{\lfloor p / 3\rfloor+1, \ldots,\lfloor 2 p / 3\rfloor\}
$$

$$
G_{3}=\{\lfloor 2 p / 3\rfloor+1, \ldots, p-2\}
$$

- Define a function $f: G \rightarrow G$ such that

$$
\begin{cases}f(z)=z g & z \in G_{1} \\ f(z)=z^{2} & z \in G_{2} \\ f(z)=z h & z \in G_{3}\end{cases}
$$

(original definition, other definitions possible)

## Pollard's rho (intuition)

- Start from $g_{0}:=g$ and apply $f$ recursively to get $g_{i}$
- By the way $f$ is defined, we can keep track of $a_{i}, b_{i}$ such that $g_{i}=g^{a_{i}} h^{b_{i}}$
- If $f$ is "random enough", obtain
 random elements in $G$ and a collision after $O(\sqrt{|G|})$ elements
- Collision gives DLP solution


## Pollard's rho (simplest version)

1: $N \leftarrow\lceil\sqrt{|G|}\rceil$
2: $a \leftarrow 1 ; b \leftarrow 0 ; \tilde{h} \leftarrow g ; L \leftarrow\{(a, b, \tilde{h})\}$
3: for $k \in\{2, \ldots, N\}$ do
4: $\quad$ if $\tilde{h} \in G_{1}$ then $a \leftarrow a+1 ; \tilde{h} \leftarrow \tilde{h} g$
5: $\quad$ if $\tilde{h} \in G_{2}$ then $a \leftarrow 2 a ; b \leftarrow 2 b ; \tilde{h} \leftarrow(\tilde{h})^{2}$
6: $\quad$ if $\tilde{h} \in G_{3}$ then $b \leftarrow b+1 ; \tilde{h} \leftarrow \tilde{h} h$
7: $\quad L \leftarrow L \cup\{(a, b, \tilde{h})\}$
8: end for
9: Find distinct $\left(a_{i}, b_{i}, \tilde{h}\right) \in L, i=1,2$
10: if no such elements then abort
11: return $-\left(a_{1}-a_{2}\right) /\left(b_{1}-b_{2}\right) \bmod |G|$

## Pollard's rho analysis

- Correctness :
- Every $(a, b, \tilde{h})$ in the list satisfies $\tilde{h}=g^{a} h^{b}$
- $g^{a_{1}} h^{b_{1}}=g^{a_{2}} h^{b_{2}}$ implies $h=g^{-\frac{a_{1}-a_{2}}{b_{1}-b_{2}}}$
- Time and memory costs $N \approx \sqrt{|G|}$
- Good probability of success by birthday's paradox


## Pollard's rho (improvement)

- Let $\left(L_{1}, L_{1}+L_{2}\right)$ be the indices of first collision
- Then $\left(L_{1}+j, L_{1}+k L_{2}+j\right)$ also collide
- For $j, k$ such that $L_{1}+j=k L_{2}$, we have $L_{1}+k L_{2}+j=2\left(L_{1}+j\right)$

- Now search for $\left(a_{i}, b_{i}, \tilde{h}_{i}\right)$ and $\left(a_{2 i}, b_{2 i}, \tilde{h}_{2 i}\right)$ such that $\tilde{h}_{i}=\tilde{h}_{2 i}$
- Only requires constant size memory


## Pohlig-Hellman

- Assume $|G|=n_{1} n_{2}$ and let $g$ a generator of $G$
- $h=g^{k}$ implies $h^{n_{1}}=\left(g^{n_{1}}\right)^{k}$ where $g^{n_{1}}$ generates a subgroup of order $n_{2}$
- Solving DLP in that subgroup gives $k \bmod n_{2}$
- Repeating for each factor and using CRT gives $k$


## Pohlig-Hellman (example)

- Let $G=\mathbb{Z}_{13}^{*}$, let $g=2$ and let $h=7$
- We have $|G|=12=2^{2} \cdot 3$
- Recover $k \bmod 2$ by solving $\left(2^{6}\right)^{k}=7^{6} \bmod 13 \Leftrightarrow$ $(-1)^{k}=-1 \bmod 13 \Leftrightarrow k=1 \bmod 2$
- Write $k=1+2 k^{\prime}$. Recover $k$ mod 4 by solving $\left(2^{3}\right)^{1+2 k^{\prime}}=7^{3} \bmod 13 \Leftrightarrow(-1)^{k^{\prime}}=-1 \bmod 13$ $\Leftrightarrow k^{\prime}=1 \bmod 2 \Leftrightarrow k=3 \bmod 4$
- Recover $k \bmod 3$ by solving $\left(2^{4}\right)^{k}=7^{4} \bmod 13 \Leftrightarrow(3)^{k}=9 \bmod 13 \Leftrightarrow k=2 \bmod 3$
- Use CRT to deduce $k=11 \bmod 12$


## Outline

## Generic discrete logarithm algorithms

Discrete logarithms over finite fields

## Elliptic curve discrete logarithms

## Factorization algorithms

Some side-channel attacks

Lab and tutorial content

## Prime fields

- $\left(\mathbb{Z}_{p},+, *\right)$ is a field for any prime $p$
- This field is often denoted $\mathbb{F}_{p}$


## Extension fields

- Let $f$ be a polynomial of degree $n$ with coefficients in $\mathbb{F}_{p}$, such that $f$ has no factor of degree different than 0 or $n$
- Consider $(K,+, *)$ where
- $K=\left\{\right.$ all polynomials of degree at most $n$ over $\left.\mathbb{F}_{p}\right\}$
-     + and $*$ are addition and multiplication modulo the polynomial $f$
- Then $(K,+, *)$ is a finite field with $p^{n}$ elements
- Example : let $f(x)=x^{2}+x+1 \in \mathbb{F}_{2}[x]$ then $\mathbb{F}_{4}=\mathbb{F}_{2}[x] /\left(f(x) \mathbb{F}_{2}[x]\right)$ is a finite field with 4 elements $\{0,1, x, x+1\}$


## Extension fields

- Let $f$ be a polynomial of degree $n$ with coefficients in $\mathbb{F}_{p}$, such that $f$ has no factor of degree different than 0 or $n$
- Consider $(K,+, *)$ where
- $K=\left\{\right.$ all polynomials of degree at most $n$ over $\left.\mathbb{F}_{p}\right\}$
-     + and $*$ are addition and multiplication modulo the polynomial $f$
- Then $(K,+, *)$ is a finite field with $p^{n}$ elements
- Example : let $f(x)=x^{2}+x+1 \in \mathbb{F}_{2}[x]$ then $\mathbb{F}_{4}=\mathbb{F}_{2}[x] /\left(f(x) \mathbb{F}_{2}[x]\right)$ is a finite field with 4 elements $\{0,1, x, x+1\}$
- Theorem : any finite field can be constructed this way


## DLP over finite fields

- In fact, DLP over the multiplicative group of finite fields (DLP over the additive group is easy)
- DLP : given $p, n$, given $g$ a generator of $\mathbb{F}_{p^{n}}^{*}$, and given $h=g^{k}$, compute $k$


## Fields used in cryptography

- $\mathbb{F}_{p}^{*}$ where $p$ is prime : most used, believed to be secure
- $\mathbb{F}_{p^{n}}^{*}$ where $p$ is prime and $n$ is small (typically up to 12 ): used in pairing applications
- $\mathbb{F}_{2^{n}}^{*}$ or $\mathbb{F}_{3^{n}}^{*}$ where $n$ is a product of small primes: should be avoided (Pohlig-Hellman attack)
- $\mathbb{F}_{2^{n}}^{*}$ or $\mathbb{F}_{3^{n}}^{*}$ for arbitrary $n$ : should now also be avoided, suggested before 2013 for efficiency reasons


## Fields used in cryptography

- $\mathbb{F}_{p}^{*}$ where $p$ is prime : most used, believed to be secure
- $\mathbb{F}_{p^{n}}^{*}$ where $p$ is prime and $n$ is small (typically up to 12 ): used in pairing applications
- $\mathbb{F}_{2^{n}}^{*}$ or $\mathbb{F}_{3^{n}}^{*}$ where $n$ is a product of small primes: should be avoided (Pohlig-Hellman attack)
- $\mathbb{F}_{2^{n}}^{*}$ or $\mathbb{F}_{3^{n}}^{*}$ for arbitrary $n$ : should now also be avoided, suggested before 2013 for efficiency reasons
- Remark : typically work over a prime order subgroup of $\mathbb{F}_{p}^{*}$ or $\mathbb{F}_{p^{n}}^{*}$, otherwise problems such as decisional Diffie-Helman are easy


## $L$ notation

$$
L_{Q}(\alpha ; c)=\exp \left(c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha}\right)
$$

- $Q$ is the size of the field
- $\alpha=0 \Rightarrow L_{Q}(\alpha ; c)=(\log Q)^{c}$ polynomial
- $\alpha=1 \Rightarrow L_{Q}(\alpha ; c)=Q^{c}$ exponential
- The constant $c$ has a practical impact


## Some history

- See Joux, Odlyzko, Pierrot. The past, evolving present and future of discrete logarithms http:
//www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf


## Index calculus

- Generic framework to solve discrete logarithm problems, but some steps are group-specific
- Let $g, h$ a DLP problem


## Index calculus

- Generic framework to solve discrete logarithm problems, but some steps are group-specific
- Let $g, h$ a DLP problem
- Define a factor basis $\mathcal{F} \subset G$, ensuring $\mathcal{F}$ contains a generator (most elements in $G$ are generators)
- Can assume $g \in \mathcal{F}$, otherwise do the following :
- Pick a generator $g^{\prime} \in \mathcal{F}$
- Compute a such that $g=\left(g^{\prime}\right)^{a}$
- Compute $b$ such that $h=\left(g^{\prime}\right)^{b}$
- Compute $k=b / a \bmod |G|$
- Remark : size of $\mathcal{F}$ will be optimized for efficiency


## Index calculus

- Find about $|\mathcal{F}|$ relations between factor basis elements

$$
\mathcal{R}_{j}: \quad \prod_{f_{i} \in \mathcal{F}} f_{i}^{a_{i, j}}=1
$$

(the algorithm to compute the relations is group-specific)

- Deduce

$$
\sum_{f_{i} \in \mathcal{F}} a_{i, j} \log _{g} f_{i}=0
$$

or

$$
\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{|\mathcal{F}|, 1} \\
\vdots & & \vdots \\
a_{1,|\mathcal{F}|} & \cdots & a_{|\mathcal{F}|,|\mathcal{F}|}
\end{array}\right)\left(\begin{array}{c}
\log _{g} f_{1} \\
\vdots \\
\log _{g} f_{|\mathcal{F}|}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

## Index calculus

- Use linear algebra to compute all $\log _{g} f_{i}$, the discrete logarithms of factor basis elements
- Deduce the discrete logarithm of $h$
(This part is group-specific and may involve several steps)
- Remarks :
- Relations often involve few elements, hence linear algebra is sparse
- In some cases, $h$ is included in the factor basis and the last step is avoided : linear algebra produces $\log _{g} h$


## Example : a naive index calculus for $\mathbb{F}_{p}^{*}$

- DLP : given $g, h \in \mathbb{F}_{p}^{*}$, find $k$ such that $h=g^{k}$
- Factor basis made of small primes

$$
\mathcal{F}_{B}:=\left\{\text { primes } p_{i} \leq B\right\}
$$

- Relation search
- Compute $r_{j}:=g^{a_{j}} h^{b_{j}}$ for random $a_{j}, b_{j} \in\{1, \ldots, p-1\}$
- If all factors of $r_{j}$ are $\leq B$, we have a relation

$$
g^{a_{j}} h^{b_{j}}=\prod_{p_{i} \in \mathcal{F}} p_{i}^{e_{i, j}}
$$

- Linear algebra produces $g^{a} h^{b}=1$


## Size of the factor basis

- By the prime number theorem,

$$
\mid\left\{\text { primes } p_{i} \leq B\right\} \left\lvert\, \approx \frac{B}{\ln B}\right.
$$

## Smooth numbers

- A number is $B$-smooth if all its prime factors are smaller than $B$
- Define $\Psi(N, B)=\#\{B$-smooth numbers $\leq N\}$


## Smooth numbers

- A number is $B$-smooth if all its prime factors are smaller than $B$
- Define $\Psi(N, B)=\#\{B$-smooth numbers $\leq N\}$
- Let $u=\log N / \log B$. We have

$$
\Psi(N, B)=N \rho(u)+O\left(\frac{N}{\log B}\right)
$$

- The proportion of smooth numbers is roughly a function $\rho$ of $u=\log N / \log B$,
- The Dickman-de Bruijn function $\rho$ satisfies $\rho(u) \approx u^{-u}$


## Dickman-de Bruijn function $\rho$

- The Dickman-de Bruijn function $\rho$ satisfies $\rho(u) \approx u^{-u}$


The Dickman-de Eruijn function $\rho(u)$ plotted on a logarithmic scale. The horizontal axis is the argument $u$, and the vertical axis is the value of the function. The graph nearly makes a dowmward line on the logarithmic scale, demonstrating that the logarithm of the function is quasilinear.
$\log \rho \approx-u \log u$
(picture source : Wikipedia)

## Naive analysis of naive index calculus

- Choose $\log B \approx(\log p)^{1 / 2}$
- $|\mathcal{F}| \approx B / \log B \approx 2^{(\log p)^{1 / 2}-(\log \log p)^{-1 / 2}} \approx 2^{(\log p)^{1 / 2}}$
- $u=\log p / \log B \approx(\log p)^{1 / 2}$
- $\rho(u)=(\log p)^{-1 / 2(\log p)^{1 / 2}} \approx 2^{-1 / 2(\log p)^{1 / 2}(\log \log p)}$
- Number of random trials to get $|\mathcal{F}|$ relations is

$$
\approx|\mathcal{F}| \rho(u)^{-1} \approx 2^{(1 / 2+o(1))(\log p)^{1 / 2}(\log \log p)}
$$

- Each trial has polytime complexity in $\log p$
- Linear algebra cost is $|\mathcal{F}|^{\omega} \approx 2^{\omega(\log p)^{1 / 2}}$
- Total cost dominated by relation search


## Naive analysis of naive index calculus

- Choose $\log B \approx(\log p)^{1 / 2}$
- $|\mathcal{F}| \approx B / \log B \approx 2^{(\log p)^{1 / 2}-(\log \log p)^{-1 / 2}} \approx 2^{(\log p)^{1 / 2}}$
- $u=\log p / \log B \approx(\log p)^{1 / 2}$
- $\rho(u)=(\log p)^{-1 / 2(\log p)^{1 / 2}} \approx 2^{-1 / 2(\log p)^{1 / 2}(\log \log p)}$
- Number of random trials to get $|\mathcal{F}|$ relations is

$$
\approx|\mathcal{F}| \rho(u)^{-1} \approx 2^{(1 / 2+o(1))(\log \rho)^{1 / 2}(\log \log \rho)}
$$

- Each trial has polytime complexity in $\log p$
- Linear algebra cost is $|\mathcal{F}|^{\omega} \approx 2^{\omega(\log p)^{1 / 2}}$
- Total cost dominated by relation search
- $B \approx L_{p}(1 / 2 ; c)$ leads to slighly better cost $L_{p}\left(1 / 2 ; c^{\prime}\right)$


## Same algorithm for $\mathbb{F}_{2^{n}}^{*}$

- DLP : given $g, h \in \mathbb{F}_{2^{n}}^{*}$, find $k$ such that $h=g^{k}$
- Factor basis made of small "primes"

$$
\mathcal{F}_{B}:=\left\{\text { irreducible } f(X) \in \mathbb{F}_{2}[X] \mid \operatorname{deg}(f) \leq B\right\}
$$

## Same algorithm for $\mathbb{F}_{2^{n}}^{*}$

- DLP : given $g, h \in \mathbb{F}_{2^{n}}^{*}$, find $k$ such that $h=g^{k}$
- Factor basis made of small "primes"

$$
\mathcal{F}_{B}:=\left\{\text { irreducible } f(X) \in \mathbb{F}_{2}[X] \mid \operatorname{deg}(f) \leq B\right\}
$$

- Relation search
- Compute $r_{j}:=g^{a_{j}} h^{b_{j}}$ for random $a_{j}, b_{j} \in\{1, \ldots, p-1\}$
- Factor $r_{j} \in \mathbb{F}_{2}[X]$ with Berlekamp's algorithm
- If all factors $\in \mathcal{F}_{B}$, we have a relation $g^{a} h^{b}=\prod_{f_{i} \in \mathcal{F}} f_{i}^{e_{i}}$
- Linear algebra produces $g^{a} h^{b}=1$


## Coppersmith's algorithm for $\mathbb{F}_{2^{n}}$

- Idea : reduce factor basis to polynomials of degree $n^{1 / 3}$ (vs. $n^{1 / 2}$ ) by ensuring all $r_{j}$ have degree $n^{2 / 3}$ (vs. $n$ )


## Coppersmith's algorithm for $\mathbb{F}_{2^{n}}$

- Idea : reduce factor basis to polynomials of degree $n^{1 / 3}$ (vs. $n^{1 / 2}$ ) by ensuring all $r_{j}$ have degree $n^{2 / 3}$ (vs. $n$ )
- Remember $\mathbb{F}_{2^{n}} \approx \mathbb{F}_{2}[x] /(p(x))$ for any irreducible $p$ Choose $p(x)=x^{n}+q(x)$ where $\operatorname{deg} q \leq n^{2 / 3}$
- Remember squaring is linear : $(a+b)^{2}=a^{2}+b^{2}$


## Coppersmith's algorithm for $\mathbb{F}_{2^{n}}$

- Idea : reduce factor basis to polynomials of degree $n^{1 / 3}$ (vs. $n^{1 / 2}$ ) by ensuring all $r_{j}$ have degree $n^{2 / 3}$ (vs. $n$ )
- Remember $\mathbb{F}_{2^{n}} \approx \mathbb{F}_{2}[x] /(p(x))$ for any irreducible $p$ Choose $p(x)=x^{n}+q(x)$ where $\operatorname{deg} q \leq n^{2 / 3}$
- Remember squaring is linear: $(a+b)^{2}=a^{2}+b^{2}$
- Let $k=2^{e} \approx n^{1 / 3}$, let $d \approx n^{1 / 3}$
- Let $h \approx n^{2 / 3}$ least integer larger than $n / k$
- Let $r(x)=x^{h k} \bmod p(x)=q(x) x^{h k-n}$
with $\operatorname{deg} r<k+\operatorname{deg} q \approx n^{2 / 3}$


## Coppersmith's algorithm for $\mathbb{F}_{2^{n}}$

- Factor basis are elements with degree smaller than $d$, where $d$ smallest integer $\geq n^{1 / 3}$
- Relations will be of the form $d(x)=(c(x))^{k}$ for $c, d$ smooth, where $c$ constructed in a special way
- Relation search
- Take $a(x)$ and $b(x)$ coprime with degrees $d$
- Take $c(x)=a(x) x^{h}+b(x)$ degree $O\left(n^{2 / 3}\right)$
- Take $d(x)=(c(x))^{k} \bmod p$
- We have $d(x)=r(x)(a(x))^{k}+(b(x))^{k}$ degree $O\left(n^{2 / 3}\right)$
- If both $c$ and $d$ are smooth, we get a relation
- Probability $O\left(2^{-n^{1 / 3}-\epsilon}\right)$


## Coppersmith's algorithm for $\mathbb{F}_{2^{n}}$

- Individual logarithms for polynomials of degrees $\ll n$
- Let $m(x)$ a polynomial with degree $\ll n$
- Choose $a(x)$ and $b(x)$ coprime random such that $m(x) \mid c(x)=a(x) x^{h}+b(x)$
- Let $d(x)=(c(x))^{k} \bmod p(x)$ as above
- If $d$ and $c / m$ smooth, we can write $m$ in the factor basis


## Coppersmith's algorithm for $\mathbb{F}_{2^{n}}$

- Individual logarithms for polynomials of degrees $\ll n$
- Let $m(x)$ a polynomial with degree $\ll n$
- Choose $a(x)$ and $b(x)$ coprime random such that $m(x) \mid c(x)=a(x) x^{h}+b(x)$
- Let $d(x)=(c(x))^{k} \bmod p(x)$ as above
- If $d$ and $c / m$ smooth, we can write $m$ in the factor basis
- Individual logarithms
- Involve several steps to write $m$ as a product of smaller and smaller factors


## Function field sieve and beyond

- Kind of generalization of Coppersmith ; complexity $L(1 / 3)$
- Best algorithm in all fields until 2013


## Function field sieve and beyond

- Kind of generalization of Coppersmith ; complexity $L(1 / 3)$
- Best algorithm in all fields until 2013
- Now quasi-polynomial algorithms for finite fields of small to medium characteristic
- See Joux, Odlyzko, Pierrot for a recent survey www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf


## Outline

## Generic discrete logarithm algorithms

Discrete logarithms over finite fields
Elliptic curve discrete logarithms

## Factorization algorithms

Some side-channel attacks

Lab and tutorial content

## Groups used in cryptography

- Finite fields : avoid small characteristic since 2013, otherwise subexponential
- Elliptic curves : best attacks are generic ones for well-chosen families
- Hyperelliptic curves: subexponential for large genus: only genus 1 (EC) and genus 2 seriously considered


## Elliptic curve cryptography



- 1985 : Koblitz and Miller independently propose to use elliptic curves in cryptography


## Elliptic curves

$y^{2}=x^{3}+A x+B$.


## Elliptic curves

$y^{2}=x^{3}+A x+B$.


## Elliptic curves

- Strange addition law : adding points on (special) curves


## Elliptic curves

- Strange addition law : adding points on (special) curves
- Originally mathematical recreation
- Central in Wiles' proof of Fermat's last theorem $\forall n>2, \nexists$ non trivial $x, y, z \in \mathbb{Z}$ s.t. $z^{n}=x^{n}+y^{n}$


## Elliptic curves

- Strange addition law : adding points on (special) curves
- Originally mathematical recreation
- Central in Wiles' proof of Fermat's last theorem $\forall n>2$, $\nexists$ non trivial $x, y, z \in \mathbb{Z}$ s.t. $z^{n}=x^{n}+y^{n}$
- Introduced to crypto in 1985
- Now they build the strongest cryptosystems!
- Also used for factoring middle-size integers and primality proving


## "Inverse" of a point

$$
y^{2}=x^{3}+A x+B
$$

- Let $P:=(x, y)$ be a point of a curve
- Define $-P$ as the symmetric of $P$ by the $x$-axis, that is $-P:=(x,-y)$



## Adding two distinct points

$$
y^{2}=x^{3}+A x+B
$$

- Let $P:=\left(x_{1}, y_{1}\right)$ and $Q:=\left(x_{2}, y_{2}\right)$ where $x_{1} \neq x_{2}$
- Draw the line through $P$ and $Q$
- Call $-R$ the third intersection of this line with the curve
- Define $P+Q$ as the symmetric of $-R$ by the $x$-axis



## Doubling a point

$$
y^{2}=x^{3}+A x+B
$$

- Let $P:=(x, y)$
- Draw the tangent line through $P$
- Call $-R$ the second intersection of this line with the curve
- Define $P+P$ as the symmetric of $-R$ by the $x$-axis



## Secant and tangent rules

- Any non vertical line intersects the curve at exactly three points (counted with multiplicities)
A tangent point is counted twice


## Secant and tangent rules

- Any non vertical line intersects the curve at exactly three points (counted with multiplicities)
A tangent point is counted twice
- By convention, the point at infinity $O$ intersects every vertical line


## A group law

- The sum of two points of the curve is a point of the curve (including the point at infinity)
- The point at infinity is the neutral element
- Any element has an inverse
- Can prove associativity : $(P+Q)+R=P+(Q+R)$


## Scalar multiplication

$$
y^{2}=x^{3}+A x+B
$$

- For $k \in \mathbb{Z}$, define

$$
[k](P):=\underbrace{P+P+\ldots+P}_{k \text { times }}
$$

- If $K$ finite, then for any $P \in E(K)$, there is $m \in \mathbb{Z}$ such that $[m](P)=O \quad(m$ is called the order of $P)$


## Scalar multiplication



## Scalar multiplication

$$
k P=\underbrace{P+P+\cdots+P}_{k \text { times }}
$$

## Scalar multiplication

$$
k P=\underbrace{P+P+\cdots+P}_{k \text { times }}
$$

## Scalar multiplication

$$
k P=\underbrace{P+P+\cdots+P}_{k \text { times }}
$$

## Scalar multiplication

$$
k P=\underbrace{P+P+\cdots+P}_{k \text { times }}
$$

## Scalar multiplication



## Elliptic curve discrete logarithm problem (ECDLP)

- Let $K$ be a finite field and let $E$ a curve over $K$
- Let $P \in E(K)$ with order $m$
- The function

$$
\sigma:\{0, \ldots, m-1\} \rightarrow E(K): k \rightarrow[k] P
$$

is bijective

## Elliptic curve discrete logarithm problem (ECDLP)

- Let $K$ be a finite field and let $E$ a curve over $K$
- Let $P \in E(K)$ with order $m$
- The function

$$
\sigma:\{0, \ldots, m-1\} \rightarrow E(K): k \rightarrow[k] P
$$

is bijective

- Computing $\sigma$ is easy. Inverting $\sigma$ is know as the elliptic curve discrete logarithm problem (ECDLP)


## ECDLP even harder than DLP and factoring

- ECDLP is (believed to be) a very hard computational problem
- Discrete logarithm and integer factorization problems require numbers as big as 1200 bits when ECDLP is safe with only 160 bits ( $\rightarrow$ performance consequences)
- On the other hand, DLP and FP better studied and understood than ECDLP
- Elliptic curve groups very far from generic ones; we might find particular structures to exploit in future


## Reductions to simpler DLP

- Idea : transfer ECDLP to a "simpler" DLP problem through a group homorphism


## Reductions to simpler DLP

- Idea : transfer ECDLP to a "simpler" DLP problem through a group homorphism
- MOV reduction if $|G|$ divides $q^{m}-1$ Transfer ECDLP to DLP on $K^{m}$ using pairings


## Reductions to simpler DLP

- Idea : transfer ECDLP to a "simpler" DLP problem through a group homorphism
- MOV reduction if $|G|$ divides $q^{m}-1$ Transfer ECDLP to DLP on $K^{m}$ using pairings
- Polynomial time for anomalous curves Transfer ECDLP to a $p$-adic elliptic logarithm if $|G|=|K|$


## Reductions to simpler DLP

- Idea : transfer ECDLP to a "simpler" DLP problem through a group homorphism
- MOV reduction if $|G|$ divides $q^{m}-1$ Transfer ECDLP to DLP on $K^{m}$ using pairings
- Polynomial time for anomalous curves Transfer ECDLP to a $p$-adic elliptic logarithm if $|G|=|K|$
- Weil descent for some curves over $\mathbb{F}_{p^{n}}$ Transfer ECDLP to the Jacobian of a hyperelliptic curve
- Only work for specific families, not the ones recommended in standards


## Index calculus for ECDLP

- Long-standing challenge : how to define "small elements"
- 2005 : first answer by Semaev
- Factor basis $=$ elements with $x$-coordinate in a subset
- Computing a relation is reduced to solving some multivariate polynomial, with additional constraints
- 2008 : attacks by Gaudry and Diem for elliptic curves over $\mathbb{F}_{p^{n}}$ when $n$ is composite
- 2012 : evidence that ECDLP over $\mathbb{F}_{2^{n}}$ is subexponential, but in practice generic attacks are still better


## Outline

## Generic discrete logarithm algorithms <br> Discrete logarithms over finite fields <br> Elliptic curve discrete logarithms

Factorization algorithms
Some side-channel attacks
Lab and tutorial content

OXFORD

## Integer factorization

- Given a composite number $n$, compute its (unique) factorization $n=\prod p_{i}^{e_{i}}$ where $p_{i}$ are prime numbers
- Equivalently : compute one non-trivial factor $p_{i}$
- We will assume $n=p q$, where $p$ and $q$ are primes


## Sieving

- Principle : try every prime number up to $\sqrt{n}$
- Expect to do $O\left(n^{1 / 2} / \log n\right)$ trials


## Pollard's rho

- Idea : find $x$ and $y$ such that $\operatorname{gcd}(x-y, n)=p$ in other words $x=y \bmod p$ but $x \neq y \bmod n$
- Define some "pseudorandom" iteration function $f$
- Compute iterates $x_{i}$ and $x_{2 i}$
- Simultaneously compute $\operatorname{gcd}\left(x_{i}-x_{2 i}, n\right)$
- By birthday's paradox, $x_{i}=x_{2 i} \bmod p$ after $O\left(p^{1 / 2}\right)$ trials on average, and $x_{i}=x_{2 i} \bmod n$ after $O\left(n^{1 / 2}\right)$ trials on average
- Hence we succeed after $O\left(p^{1 / 2}\right)$ trials on average


## $p-1$ powersmooth

- A number $x=\prod p_{i}^{e_{i}}$ is $B$-powersmooth if $p_{i}^{e_{i}}<B$
- Assume $p-1$ is $B$-powersmooth
- If $s=$ product of all $p_{i}^{e_{i}}<B$ then $p-1 \mid s$ then $g^{s}=1 \bmod p$
- We deduce $\operatorname{gcd}\left(g^{s}-1, n\right)=p$
- Can be computed with square-and-multiply algorithm


## Elliptic curve factorization method



- Idea : generalize previous method when neither $p-1$ nor $q-1$ are smooth
- The group order $\# E\left(\mathbb{F}_{p}\right)$ of an elliptic curve can be smooth even when $p-1$ is not!


## Elliptic curve addition law

- Let $E: y^{2}=x^{3}+a_{4} x+a_{6}$
- Let $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$ two points on the curve
- The chord-and-tangent rules lead to addition law formulae : for example we have $P_{1}+P_{2}=\left(x_{3}, y_{3}\right)$ where $\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad \nu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}$, $x_{3}=\lambda^{2}-x_{1}-x_{2}, \quad y_{3}=-\lambda x_{3}-\nu$


## Elliptic curve addition law

- Let $E: y^{2}=x^{3}+a_{4} x+a_{6}$
- Let $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$ two points on the curve
- The chord-and-tangent rules lead to addition law formulae : for example we have $P_{1}+P_{2}=\left(x_{3}, y_{3}\right)$ where $\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad \nu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}$,
$x_{3}=\lambda^{2}-x_{1}-x_{2}, \quad y_{3}=-\lambda x_{3}-\nu$
- These formulae involve divisions
- Over $\mathbb{F}_{p}$, a division by 0 means $P_{3}$ is point at infinity
- Over $\mathbb{Z}_{n}$, a division fails if $\left(x_{2}-x_{1}\right)$ is not invertible
- A failure reveals a factor of $n$ !


## Elliptic curve factorization method

1. Choose $E$ and $P=(x, y) \in E\left(\mathbb{Z}_{n}\right)$
2. Let $B$ be a smoothness bound on $\# E\left(\mathbb{Z}_{p}\right)$ for $p \mid n$
3. Compute $s=\prod p_{i}^{e_{i}}$ where $p_{i}^{e_{i}} \leq B$
4. We have $[s] P=0=$ "point at infinity" modulo $p$ but $[s] P \neq 0$ in $\mathbb{Z}_{n}$
5. Try to compute $[s](P)$ : a division by $p$ must occur and produce an error
6. When a division by some $d$ fails, compute

$$
\operatorname{gcd}(d, n) \neq 1
$$

## Elliptic curve factorization method

1. For a random curve, we expect $\# E\left(\mathbb{F}_{p}\right)$ to be $\pm$ uniformly distributed in

$$
\# E\left(\mathbb{F}_{p}\right) \in[(p+1)-2 \sqrt{p},(p+1)+2 \sqrt{p}]
$$

2. Powersmooth probabilities can be estimated
3. In practice: choose the best bound $B$ and choose a random curve until the method works
4. In practice, the method is used as subroutine to factor middle-size integers when $\log _{2} n \approx 60-80$ bits
5. Remark : runtime depends on the smallest factor

## Sieving algorithms

- Goal : find $x \neq \pm 1 \bmod n$ with $x^{2}=1 \bmod n$


## Sieving algorithms

- Goal : find $x \neq \pm 1 \bmod n$ with $x^{2}=1 \bmod n$
- Idea : index calculus
- Search for many relations $\prod p_{i}^{e_{i}}=1 \bmod n$
- Do linear algebra over $\mathbb{Z}_{2}$ to deduce a relation

$$
\left(\prod p_{i}^{f_{i}}\right)^{2}=1 \bmod n
$$

## Sieving algorithms

- Goal : find $x \neq \pm 1 \bmod n$ with $x^{2}=1 \bmod n$
- Idea : index calculus
- Search for many relations $\prod p_{i}^{e_{i}}=1 \bmod n$
- Do linear algebra over $\mathbb{Z}_{2}$ to deduce a relation

$$
\left(\prod p_{i}^{f_{i}}\right)^{2}=1 \bmod n
$$

- To obtain relations
- Linear sieve : look for $a$ and $a+n$ both smooth


## Sieving algorithms

- Goal : find $x \neq \pm 1 \bmod n$ with $x^{2}=1 \bmod n$
- Idea : index calculus
- Search for many relations $\prod p_{i}^{e_{i}}=1 \bmod n$
- Do linear algebra over $\mathbb{Z}_{2}$ to deduce a relation

$$
\left(\prod p_{i}^{f_{i}}\right)^{2}=1 \bmod n
$$

- To obtain relations
- Linear sieve : look for $a$ and $a+n$ both smooth
- Quadratic sieve : let $r=\lceil\sqrt{n}\rceil$, hence $r^{2}-n<2 \sqrt{n}+1$. Look for $(r+x)^{2}-n$ smooth


## General number field sieve (GNFS)

- Best algorithm to date
- Involves smaller factorization problems, usually solved with other sieves and the elliptic curve method
- Involves large, sparse linear algebra over $\mathbb{F}_{2}$


## General number field sieve (GNFS)

- Best algorithm to date
- Involves smaller factorization problems, usually solved with other sieves and the elliptic curve method
- Involves large, sparse linear algebra over $\mathbb{F}_{2}$
- Factorization record : 768 bits Several research teams and a large computing effort
- "1024-bit RSA about 1000 times more difficult" http://eprint.iacr.org/2010/006.pdf


## Outline

## Generic discrete logarithm algorithms

Discrete logarithms over finite fields
Elliptic curve discrete logarithms

## Factorization algorithms

Some side-channel attacks
Lab and tutorial content

OXFORD

## Side-channel attacks

- So far we have assumed the attacker had access to some public data, and was trying to deduce private data using mathematical algorithms
- Sometimes, the attacker also got access to some oracle answering queries
- In practice, the secret data may be on a smart card, and the attacker may observe the smart card when the computation is done
- Does this help?


## Reminder: Square-and-Multiply

```
1: Let \(x=\sum_{i=0}^{n} x_{i} 2^{i}\)
2: \(a^{\prime} \leftarrow a ; c \leftarrow a^{x_{0}}\);
3: for \(\mathrm{i}=1\) to n do
4: \(\quad a^{\prime} \leftarrow a^{\prime 2} \bmod p\)
5: if \(x_{i}=1\) then
6: \(\quad c \leftarrow c a^{\prime} \bmod p\)
7: end if
8: end for
9: return c
```


## Power consumption

- Let $x$ be some secret
- Suppose the attacker observes the power consumption of the smart card during the computation $g^{x} \bmod p$
- Suppose the smart card uses the square-and-multiply algorithm
- How does this help?


## Power consumption



## Power consumption

- A squaring is done at each step, a multiplication occurs only for odd bits
- The bits of $x$ can be read directly from the power consumption!
- Could be an RSA private key, or a DH random value, or...


## Countermeasure

- Add "dummy" multiplications to the algorithm

$$
\begin{aligned}
& \text { 1: Let } x=\sum_{i=0}^{n} x_{i} 2^{i} \\
& \text { 2: } a^{\prime} \leftarrow a ; c \leftarrow a^{x_{0}} ; d \leftarrow a^{1-x_{0}}
\end{aligned}
$$

3: for $\mathrm{i}=1$ to n do
4: $\quad a^{\prime} \leftarrow a^{\prime 2} \bmod p$
5: $\quad c \leftarrow c\left(a^{\prime}\right)^{x_{i}} \bmod p$
6: $\quad d \leftarrow d\left(a^{\prime}\right)^{1-x_{i}} \bmod p$
7: end for
8: return C

- Additional operations do not change the result but they will make power consumption look more uniform


## Side-channel attacks

- Example of succesfully exploited side-channels (in academic contexts) : time, power consumption, electromagnetic radiations, ...
- Do not require to break the maths, but do require some physical access to the computing device


## Outline

Generic discrete logarithm algorithmsDiscrete logarithms over finite fields
Elliptic curve discrete logarithms
Factorization algorithms
Some side-channel attacks
Lab and tutorial content

## Lab and tutorial content

- www.keylength.com
- Discrete log and factorization algorithms
- Implementation of BSGS, Pollard's rho, index calculus (in pairs, each pair focusing on a different algorithm)
- Experimentation on your implementations and comparison with Sage's routines
- Variants of birthday's paradox


## Possible related projects

- Elliptic curve primality test
- Index calculus for elliptic curves
- MOV reduction
- Quasi-polynomial time algorithm of Barbulescu-Gaudry-Joux-Thomé

