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Discrete logarithms

» Given a cyclic group (G, o) (written multiplicatively),
a generator g of G and a second element h € G,
compute k € Zg| such that gk = h

Christophe Petit -UCL COMPGA18/COMPM068



Discrete logarithms

» Given a cyclic group (G, o) (written multiplicatively),
a generator g of G and a second element h € G,
compute k € Zg| such that gk = h

» Trivial if (G,0) = (F,,+). Why?

» Recently broken if (G, 0) = (4., %)

(more generally if characteristic is small)
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Discrete logarithms

v

Given a cyclic group (G, o) (written multiplicatively),

a generator g of G and a second element h € G,
compute k € Zg| such that gk = h

Trivial if (G,0) = (Fp, +). Why?

Recently broken if (G, o) = (F%,, %)

(more generally if characteristic is small)

Believed to be hard (to different extents) for G = IF;
and for (well-chosen) elliptic/hyperelliptic curve groups

v

v

v
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Integer factorization

» Given a composite number n, compute its (unique)
factorization n = [] p’ where p; are prime numbers
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Integer factorization

» Given a composite number n, compute its (unique)
factorization n = [] p’ where p; are prime numbers

v

Equivalently (why ?) : compute one non-trivial factor p;

v

Trivial if n = p¢

v

Believed to be hard if n = pg for well-chosen p # g
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RSA and Diffie-Hellman

» DLP broken implies Diffie-Hellman broken

» Factorization broken implies RSA broken
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RSA and Diffie-Hellman

v

DLP broken implies Diffie-Hellman broken
Factorization broken implies RSA broken
We don't know whether DH broken implies DLP broken

We don’t know whether RSA broken implies factorization
broken

v

v

v
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RSA and Diffie-Hellman

v

DLP broken implies Diffie-Hellman broken
Factorization broken implies RSA broken
We don't know whether DH broken implies DLP broken

We don’t know whether RSA broken implies factorization
broken

Nevertheless, the best attacks against DH and RSA today
are discrete log and factorization attacks

v

v

v

v
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Outline

Generic discrete logarithm algorithms
Discrete logarithms over finite fields
Elliptic curve discrete logarithms
Factorization algorithms

Some side-channel attacks

Lab and tutorial content
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Outline

Generic discrete logarithm algorithms
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Generic attacks

» DLP is trivial in some groups
» DLP seems harder in other groups

» Best attacks in a particular group often rely on
specific properties of the group
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Generic attacks

v

DLP is trivial in some groups

v

DLP seems harder in other groups

v

Best attacks in a particular group often rely on
specific properties of the group

v

Can we find better groups?
How hard can DLP be in the best (hardest) groups?

v
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Group isomorphisms

>

Any cyclic group (G, o) of order n can be seen as (Z,,+)
in the following sense : there exists an invertible map
¢ : G — Z, such that Vx,y € G, we have

p(xoy)=o(x)+o(y)

Remark ¢ does not need to be efficiently computable

Example : let g of order p — 1 in Z;,. Can define ¢ as
sending any h € G to ¢(h) € Z, 1 such that h = g#().
Let x' = ¢(x) and ¥y’ = ¢(y). We have

e X 4y") = o M e(x)+e(y)) = ¢ M p(xoy)) = xoy = ¢ (x ) (y')
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DLP in the generic group model

» A DLP instance is generated in (Z,, +), including a
generator g € Z, and another element h = kg € Z,

v

A random invertible map 0 : Z,, — Z, is chosen

v

The map defines a group (Z,, o) with

xoy =10 (9,1()() + (971()/))

The attacker is NOT given g, h nor 6

The attacker is given 0(g), 6(h) and access to oracles
» Op : on input x,y, return 6 (71(x) + 671(y))
» O, : on input x, return 6(—6071(x))

v

v

v

The attacker’s goal is to compute k
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Generic group model

» As 0 is random, there is no special property of the group
that can be exploited

» n itself is sometimes hidden, and the attacker just
receives bitstrings instead of Z, elements (the size of n
cannot be hidden)

» Some attacks are generic : they work for any group
This includes exhaustive search, BSGS, Pollard’s rho

» There exist much better attacks for finite fields

» Still no better attack for (well-chosen) elliptic curves
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Exhaustive search

» Given g, h € G do the following
1. k< 1; h g

if ¥ = h then
return k

else
k< k+1; <+ Hg
Go to Step 2

7: end if

» Generic algorithm

» Time complexity |G| in the worst case, |G|/2 on average

» Can we do better?
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Baby step, giant step (BSGS)

» Let h = g*. You want to compute k.
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Baby step, giant step (BSGS)

» Let h = g*. You want to compute k.

- Let V' = [/]G]]

» There exist 0 < /,j < N such that k = jN' + i
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Baby step, giant step (BSGS)

» Let h = g*. You want to compute k.

- Let V' = [/]G]]

» There exist 0 < /,j < N such that k = jN' + i

h— ng’+i o hg—jN’ _ g
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Baby step, giant step (BSGS)

Let h = g*. You want to compute k.

Let N = [\/TG]]

There exist 0 < i,j < N’ such that k = jN' + i

v

v

v

h— ng’+i o hg—jN’ _ g

Compute Lg := {g'|i =0,...,N' — 1}
Compute Lg := {hgN'|j =0,...,N' — 1}

v

>
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Baby step, giant step (BSGS)

Let h = g*. You want to compute k.

Let N = [\/TG]]

There exist 0 < i,j < N’ such that k = jN' + i

v

v

v

h— ng’+i o hg—jN’ _ g

Compute Lg := {g'|i =0,...,N' — 1}
Compute Lg := {hgN'|j =0,...,N' — 1}
» Attack requires time and memory O(+/|G|)

v

v
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Birthday paradox

» Suppose there are N, people in a room. What is the
probability that two people have the same birthday ?

» How many people needed to have a probability larger
than 50%?
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Birthday paradox

» Suppose there are N, people in a room. What is the
probability that two people have the same birthday ?

» How many people needed to have a probability larger
than 50%?

» Answer is 23 :

364 363 365 — 22 1
Prfall distinct] =1 2 . 2> .. 2222 - -
rlall distinct] 365 365 365 < 5
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Birthday paradox

» Suppose you choose N, elements randomly in a set of N
elements. What is the probability that two elements are
equal ?

» How should N, be wrt N to have a probability larger than
50% 7
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Birthday paradox

» Suppose you choose N, elements randomly in a set of N
elements. What is the probability that two elements are

equal ?
» How should N, be wrt N to have a probability larger than
50% 7
> Answer is O(v/'N) :
. N—-1 N-2 N—N,+1
Pr[all distinct] = 1+ ——F  ————-...-
rlall distinct] N N N
i 2 Np—1
~ e N.e N e N
Np(Np—1)

~ e N




Pollard’s rho (iterative function)

» Define Gy, Gy, Gz of about the same size such that
G:G1UG2UG3and G,ﬂGJ:{}
» Over Z;*n' can choose
G = {07"'7 LP/3J}1
G ={lp/3]+1,....[2p/3]},
Gy ={12p/3) +1.....p— 2}
» Define a function f : G — G such that
f(z)=28 z€ G
f(z) =2 z€ G
f(z)=zh ze€ G

(original definition, other definitions possible)
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Pollard’s rho (intuition)

» Start from gy := g and apply f
recursively to get g;

» By the way f is defined, we can
keep track of a;, b; such that
gi = g h”

» If f is “random enough”, obtain
random elements in G and a

collision after O(4/|G]) elements

» Collision gives DLP solution
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Pollard’s rho (simplest version)

IVERSITY OF

I e R SL L O A

N [VIG] )
a<1,b« 0;h< g, L+ {(a,b,h)}
for k€ {2,...,N} do
if he G; then a<—a+1;/~7<—77g
if h € G, then a < 2a; b + 2b; h + (h)?
if he Gy then b+ b+ 1;h+ hh
L+ LU{(a,b,h)}
end for
Find distinct (a;, bj,h) € L, i =1,2
if no such elements then abort

. return —(a; — a,)/(by — b2) mod |G|
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Pollard’s rho analysis

» Correctness :
» Every (a, b, h) in the list satisfies h = g?h?
» g?hPr = g2 hb2 implies h =g~ b=t

» Time and memory costs N ~ \/m

» Good probability of success by birthday's paradox
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Pollard’s rho (improvement)

» Let (Ly, Ly + Ly) be the indices of
first collision

» Then (L]_ —|—_j, L]_ + kL2 +_]) also
collide

» For j, k such that L; +j = kL,,
we have L + kLy +j = 2(L; + )

» Now sear~ch for (a;, b;, /~1~,-) angl
(@21, bai, hpj) such that h; = hy;

» Only requires constant size memory
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Pohlig-Hellman

v

Assume |G| = nyn, and let g a generator of G
h = g* implies h™ = (g™ )k
where g™ generates a subgroup of order n,

v

v

Solving DLP in that subgroup gives kK mod n;

v

Repeating for each factor and using CRT gives k
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Pohlig-Hellman (example)

» Let G=Z3; letg=2and let h=7

» We have |G| =12 =12%-3

» Recover k mod 2 by solving (2°)% = 7° mod 13 &
(-1)k=—-1mod 13 k=1mod 2

» Write k = 1 + 2k’. Recover k mod 4 by solving
(23)1+2K = 73 mod 13 & (1) = —1 mod 13
< k=1mod2 < k=3mod4

» Recover k mod 3 by solving
(2 =T7*mod 13 < (3)k =9 mod 13 & k =2 mod 3
» Use CRT to deduce kK = 11 mod 12
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Outline

Discrete logarithms over finite fields
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Prime fields

» (Zp,+, %) is a field for any prime p
» This field is often denoted IF,,
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Extension fields

Let f be a polynomial of degree n with coefficients in I,
such that f has no factor of degree different than 0 or n
Consider (K, +, x) where
» K = {all polynomials of degree at most n over F,, }
» -+ and x* are addition and multiplication
modulo the polynomial f

Then (K, +, %) is a finite field with p” elements
Example : let f(x) = x> + x + 1 € Fy[x] then

Fy = Fo[x]/(f(x)F2[x]) is a finite field with 4 elements
{0,1,x,x + 1}

v

v

v

v
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Extension fields

v

Let f be a polynomial of degree n with coefficients in I,
such that f has no factor of degree different than 0 or n
Consider (K, +, x) where

» K = {all polynomials of degree at most n over F,, }

» -+ and x* are addition and multiplication
modulo the polynomial f

Then (K, +, %) is a finite field with p” elements

Example : let f(x) = x> + x + 1 € Fy[x] then
Fy = Fo[x]/(f(x)F2[x]) is a finite field with 4 elements
{0,1,x,x + 1}

Theorem : any finite field can be constructed this way

v

v

v

v
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DLP over finite fields

» In fact, DLP over the multiplicative group of finite fields
(DLP over the additive group is easy)

> DLP : given p, n, given g a generator of [},
and given h = gk, compute k
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Fields used in cryptography

» [, where p is prime : most used, believed to be secure

» [, where p is prime and n is small (typically up to 12) :
used in pairing applications

» 5, or 3, where nis a product of small primes : should
be avoided (Pohlig-Hellman attack)

» I3, or [, for arbitrary n : should now also be avoided,
suggested before 2013 for efficiency reasons
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Fields used in cryptography

» [, where p is prime : most used, believed to be secure

» [, where p is prime and n is small (typically up to 12) :
used in pairing applications

» 5, or 3, where nis a product of small primes : should
be avoided (Pohlig-Hellman attack)

» I3, or [, for arbitrary n : should now also be avoided,
suggested before 2013 for efficiency reasons

» Remark : typically work over a prime order subgroup
of IF; or F;n, otherwise problems such as decisional
Diffie-Helman are easy
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L notation

Lo(ai: c) = exp(c(log Q)*(loglog Q)'™)

Q is the size of the field
a=0= Lo(a;c) = (log Q)¢ polynomial
a=1= Lo(a; c) = Q° exponential

v

v

v

The constant ¢ has a practical impact

v
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Some history

» See Joux, Odlyzko, Pierrot. The past, evolving present
and future of discrete logarithms
http:
//www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

Christophe Petit -UCL COMPGA18/COMPM068


http://www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
http://www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

Index calculus

» Generic framework to solve discrete logarithm problems,
but some steps are group-specific

» Let g, h a DLP problem
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Index calculus

v

Generic framework to solve discrete logarithm problems,
but some steps are group-specific

Let g, h a DLP problem

Define a factor basis F C G, ensuring JF contains a
generator (most elements in G are generators)

v

v

v

Can assume g € F, otherwise do the following :
» Pick a generator g’ € F
» Compute a such that g = (g’)?
» Compute b such that h = (g’)?
» Compute k = b/a mod |G|

Remark : size of F will be optimized for efficiency

v
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Index calculus

» Find about | F| relations between factor basis elements
R [V =1
fieF

(the algorithm to compute the relations is group-specific)

» Deduce
E ajjlog, fi =0
fieF
a1 e a.F|1 IOgg fl 0
ar - azE) \logg fi 0

ERSITY OF
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Index calculus

» Use linear algebra to compute all log, f;,
the discrete logarithms of factor basis elements

» Deduce the discrete logarithm of h
(This part is group-specific and may involve several steps)

» Remarks :
» Relations often involve few elements,
hence linear algebra is sparse
» In some cases, h is included in the factor basis and the
last step is avoided : linear algebra produces logz h

palc Safitind Christophe Petit -UCL COMPGA18/COMPMO068
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Example : a naive index calculus for

» DLP : given g, h € F, find k such that h = gk
» Factor basis made of small primes
Fg := {primes p; < B}

» Relation search
» Compute r; := g% hP for random a;, b; € {1,...,p— 1}
» If all factors of r; are < B, we have a relation

aj b __ € j
g7h% = H p;
pi€F

» Linear algebra produces g?h® =1
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Size of the factor basis

» By the prime number theorem,

B
i < B}~ —
[{primes p; < B}| ~ ——

NIVERSITY OF
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Smooth numbers

» A number is B-smooth if all its prime factors are smaller
than B

» Define W(N, B) = #{B-smooth numbers < N}
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Smooth numbers

v

A number is B-smooth if all its prime factors are smaller
than B

Define W(N, B) = #{B-smooth numbers < N}
Let u = log N/ log B. We have

v

v

W(N, B) = Np(u) + O (IOQIB)

v

The proportion of smooth numbers is roughly
a function p of u = log N/ log B,

v

The Dickman-de Bruijn function p satisfies p(u) ~ u™"
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Dickman-de Bruijn function p

» The Dickman-de Bruijn function p satisfies p(u) ~ u™"

1"

10
s
&

° 5 T a
The Dickman-de Bruin funetion p( plotted on & logarthmic scale
The horizontal axis is the argument 4, and the vertical axis is the value of Iog p % — u Iog u

the function. The graph nearly makes a downward line on the logarithmic

scale, demonstrating that the logarithm of the function is quasilinear. ( pictu re Sou rce : Wi ki ped ia )
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Naive analysis of naive index calculus

1/2

v

Choose log B ~ (log p)
| F| ~ B/ log B ~ 2(lcgp)!/*~(loglog p)"~

u = log p/ log B =~ (log p)*/?
p(u) = (log ,3)—1/2(|0gp)1/2 ~~ 2—1/2(log p)*/?(log log p)

1/2 s 2(|ng)1/2

v

v

v

v

Number of random trials to get |F| relations is

~ | Flp(u) ™t ~ o(1/2+0(1))(log p)*/?(log log p)

v

Each trial has polytime complexity in log p
> Linear algebra cost is | F|* ~ 2«(logp)"/?
» Total cost dominated by relation search

NIVERSITY OF
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Naive analysis of naive index calculus

1/2

v

Choose log B ~ (log p)
| F| ~ B/ log B ~ 2(lcgp)!/*~(loglog p)"~

u = log p/ log B =~ (log p)*/?
p(u) = (log ,3)—1/2(|0gp)1/2 ~~ 2—1/2(log p)*/?(log log p)

1/2 s 2(|ng)1/2

v

v

v

v

Number of random trials to get |F| relations is

~ | Flp(u) ™t ~ o(1/2+0(1))(log p)*/?(log log p)

v

Each trial has polytime complexity in log p

> Linear algebra cost is | F|* ~ 2«(logp)"/?

» Total cost dominated by relation search

» B~ L,(1/2;c) leads to slighly better cost L,(1/2; c’)
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Same algorithm for I3,

» DLP : given g, h € F5,, find k such that h = gk

» Factor basis made of small “primes”

Fi = {irreducible f(X) € F,[X]| deg(f) < B}

NIVERSITY OF

Christophe Petit -UCL COMPGA18/COMPM068



Same algorithm for I3,

v

DLP : given g, h € F,, find k such that h = gk

Factor basis made of small “primes”

v

Fi = {irreducible f(X) € F,[X]| deg(f) < B}

Relation search

v

» Compute r; := g% hP for random a;, b; € {1,...,p— 1}
» Factor r; € F2[X] with Berlekamp’s algorithm
> If all factors € Fg, we have a relation g?h® = [T+ f;

€

Linear algebra produces g?h® =1

v
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Coppersmith’s algorithm for [Fyn

» Idea : reduce factor basis to polynomials of degree n'/3

(vs. n'/2) by ensuring all r; have degree n*/® (vs. n)
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Coppersmith’s algorithm for [Fyn

» Idea : reduce factor basis to polynomials of degree n'/3
(vs. n'/2) by ensuring all r; have degree n*/® (vs. n)

» Remember Fyn =~ IF5[x]/(p(x)) for any irreducible p
Choose p(x) = x" + q(x) where deg g < n?/3

» Remember squaring is linear : (a + b)? = a° + b?

NIVERSITY OF

Christophe Petit -UCL COMPGA18/COMPM068



Coppersmith’s algorithm for [Fyn

» Idea : reduce factor basis to polynomials of degree n'/3
(vs. n'/2) by ensuring all r; have degree n*/® (vs. n)

» Remember Fyn =~ IF5[x]/(p(x)) for any irreducible p
Choose p(x) = x" + q(x) where deg g < n?/3

» Remember squaring is linear : (a + b)? = a° + b?

» Let k =2° ~ n'/3, let d ~ n'/3

» Let h = n?/3 least integer larger than n/k

» Let r(x) = x" mod p(x) = q(x)x=n
with deg r < k + deg g ~ n?/3

NIVERSITY OF
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Coppersmith’s algorithm for [Fyn

» Factor basis are elements with degree smaller than d,
where d smallest integer > n'/3

» Relations will be of the form d(x) = (c(x))*
for ¢, d smooth, where ¢ constructed in a special way
» Relation search
» Take a(x) and b(x) coprime with degrees d
Take c(x) = a(x)x" + b(x) degree O(n?*/3)
Take d(x) = (c(x))* mod p
We have d(x) = r(x)(a(x))* + (b(x))* degree O(n*/3)
» If both ¢ and d are smooth, we get a relation
» Probability 0(2=""*~¢)

v

v

v
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Coppersmith’s algorithm for [Fyn

» Individual logarithms for polynomials of degrees << n
» Let m(x) a polynomial with degree << n
» Choose a(x) and b(x) coprime random such that
m(x)|c(x) = a(x)x" + b(x)
» Let d(x) = (c(x))* mod p(x) as above
» If d and ¢/m smooth, we can write m in the factor basis
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Coppersmith’s algorithm for [Fyn

» Individual logarithms for polynomials of degrees << n
» Let m(x) a polynomial with degree << n
» Choose a(x) and b(x) coprime random such that
m(x)|c(x) = a(x)x" + b(x)
» Let d(x) = (c(x))* mod p(x) as above
» If d and ¢/m smooth, we can write m in the factor basis
» Individual logarithms

» Involve several steps to write m as a product of smaller
and smaller factors
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Function field sieve and beyond

» Kind of generalization of Coppersmith; complexity L(1/3)
» Best algorithm in all fields until 2013

NIVERSITY OF
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www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

Function field sieve and beyond

Kind of generalization of Coppersmith; complexity L(1/3)
Best algorithm in all fields until 2013

Now quasi-polynomial algorithms for finite fields of
small to medium characteristic

See Joux, Odlyzko, Pierrot for a recent survey
www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

v

v

v

v
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Outline

Elliptic curve discrete logarithms
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Groups used in cryptography

» Finite fields : avoid small characteristic since 2013,
otherwise subexponential

» Elliptic curves : best attacks are generic ones
for well-chosen families

» Hyperelliptic curves : subexponential for large genus :
only genus 1 (EC) and genus 2 seriously considered

RSO Christophe Petit -UCL COMPGA18/COMPMO068
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Elliptic curve cryptography

» 1985 : Koblitz and Miller independently propose to use
elliptic curves in cryptography
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Elliptic curves

y? =x3+ Ax + B.

e

)
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Elliptic curves

y? =x3+ Ax + B.

R:P+Q\
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Elliptic curves

» Strange addition law : adding points on (special) curves
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Elliptic curves

» Strange addition law : adding points on (special) curves
» Originally mathematical recreation

» Central in Wiles' proof of Fermat's last theorem
Vn> 2, Anon trivial x,y,z € Z st. z" = x"+ y"
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Elliptic curves

» Strange addition law : adding points on (special) curves
» Originally mathematical recreation

» Central in Wiles' proof of Fermat's last theorem
Vn> 2, Anon trivial x,y,z € Z st. z" = x"+ y"

» Introduced to crypto in 1985
» Now they build the strongest cryptosystems !

» Also used for factoring middle-size integers and
primality proving
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“Inverse” of a point

y>=x>+ Ax + B.

» Let P := (x,y) be a point of a curve

» Define —P as the symmetric of P by the x-axis, that is
—P:=(x,—y)

NIVERSITY OF
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Adding two distinct points

y>=x>+ Ax + B.

v

Let P:= (x1,y1) and Q := (x2, y») where x; # x,

Draw the line through P and @

Call —R the third intersection of this line with the curve
Define P + @ as the symmetric of —R by the x-axis

v

v

v




Doubling a point

y>=x>+ Ax + B.

v

Let P := (x,y)

Draw the tangent line through P

Call —R the second intersection of this line with the curve
Define P + P as the symmetric of —R by the x-axis

v

v

v




Secant and tangent rules

» Any non vertical line intersects the curve at exactly
three points (counted with multiplicities)
A tangent point is counted twice

VERSITY OF

XFORD Christophe Petit -UCL COMPGA18/COMPM068




Secant and tangent rules

» Any non vertical line intersects the curve at exactly
three points (counted with multiplicities)
A tangent point is counted twice

» By convention, the point at infinity O
intersects every vertical line
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A group law

v

The sum of two points of the curve is a point of the curve
(including the point at infinity)

v

The point at infinity is the neutral element

v

Any element has an inverse
Can prove associativity : (P+ Q)+ R=P+(Q+ R)

v
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Scalar multiplication

y?=x*+ Ax + B.
» For k € Z, define

[K(P):=P+P+..+P

k times

» If K finite, then for any P € E(K), there is m € Z such
that [m](P) = O (m is called the order of P)
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Scalar multiplication

kP=P+P+--+P

k times

\/

)
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Scalar multiplication

kP=P+P+---+P /
kt;&es R=2P




Scalar multiplication

kP=P+P+---+P /
kt;&es R=2P




Scalar multiplication

kP=P+P+---+P /
kt;&es R=2P




Scalar multiplication

kP=P+P+---+P /
kt;&es R=2P

—k

7P




Scalar multiplication

kP=P+P+---+P /
kt;&es =2P

%

7P




Elliptic curve discrete logarithm problem (ECDLP)

» Let K be a finite field and let E a curve over K
» Let P € E(K) with order m
» The function

o:{0,...,m—1} = E(K): k — [K]P

is bijective
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Elliptic curve discrete logarithm problem (ECDLP)

» Let K be a finite field and let E a curve over K
» Let P € E(K) with order m
» The function

0:{0,...,m—1} —» E(K) : k — [k]P
is bijective

» Computing o is easy. Inverting o is know as the
elliptic curve discrete logarithm problem (ECDLP)
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ECDLP even harder than DLP and factoring

» ECDLP is (believed to be) a very hard computational
problem

» Discrete logarithm and integer factorization problems
require numbers as big as 1200 bits when ECDLP is safe
with only 160 bits (— performance consequences)

» On the other hand, DLP and FP better studied and
understood than ECDLP

» Elliptic curve groups very far from generic ones;
we might find particular structures to exploit in future
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Reductions to simpler DLP

» ldea : transfer ECDLP to a “simpler” DLP problem
through a group homorphism
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Reductions to simpler DLP

» ldea : transfer ECDLP to a “simpler” DLP problem
through a group homorphism

» MOV reduction if |G| divides ¢” — 1
Transfer ECDLP to DLP on K™ using pairings
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Reductions to simpler DLP

» ldea : transfer ECDLP to a “simpler” DLP problem
through a group homorphism

» MOV reduction if |G| divides ¢” — 1
Transfer ECDLP to DLP on K™ using pairings

» Polynomial time for anomalous curves
Transfer ECDLP to a p-adic elliptic logarithm if |G| = |K]|
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Reductions to simpler DLP

Idea : transfer ECDLP to a “simpler” DLP problem
through a group homorphism

MOV reduction if |G| divides ¢” — 1

Transfer ECDLP to DLP on K™ using pairings
Polynomial time for anomalous curves

Transfer ECDLP to a p-adic elliptic logarithm if |G| = |K]|
Weil descent for some curves over F .

Transfer ECDLP to the Jacobian of a hyperelliptic curve
Only work for specific families, not the ones
recommended in standards
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Index calculus for ECDLP

v

Long-standing challenge : how to define “small elements”

v

2005 : first answer by Semaev
» Factor basis = elements with x-coordinate in a subset
» Computing a relation is reduced to solving some
multivariate polynomial, with additional constraints

v

2008 : attacks by Gaudry and Diem for elliptic curves
over F,» when n is composite

2012 : evidence that ECDLP over . is subexponential,
but in practice generic attacks are still better

v
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Factorization algorithms
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Integer factorization

» Given a composite number n, compute its (unique)
factorization n = [] pi’ where p; are prime numbers

» Equivalently : compute one non-trivial factor p;

» We will assume n = pg, where p and g are primes
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Sieving

» Principle : try every prime number up to \/n
» Expect to do O(n'/2/log n) trials
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Pollard’s rho

» ldea : find x and y such that ged(x —y,n) = p
in other words x = y mod p but x # y mod n

» Define some “pseudorandom” iteration function f
» Compute iterates x; and x;
» Simultaneously compute ged(x; — xp;, n)

» By birthday's paradox,
X; = xp; mod p after O(p'/?) trials on average, and
X; = xp; mod n after O(n'/?) trials on average

» Hence we succeed after O(p'/?) trials on average
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p — 1 powersmooth

v

A number x = [[ p{" is B-powersmooth if pf’ < B

v

Assume p — 1 is B-powersmooth

v

If s = product of all p;" < B then p — 1|s
then g =1 mod p

v

We deduce ged(g® —1,n) = p

v

Can be computed with square-and-multiply algorithm
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Elliptic curve factorization method

» |dea : generalize previous method when
neither p — 1 nor g — 1 are smooth

» The group order #E(IF,) of an elliptic curve can be
smooth even when p — 1 is not !
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Elliptic curve addition law

» Let E:y?2 =x3 4 agx + ag
» Let Py = (x1,y1), P> = (%2, y2) two points on the curve

» The chord-and-tangent rules lead to addition law

formulae : for example we have P; + P, = (x3, y3) where
— =n p = AX2"yex
x2—x1' X2—X1

X3 =\ — X1 — Xa, y3=—Ax3 —V

)
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Elliptic curve addition law

» Let E:y?2 =x3 4 agx + ag
» Let Py = (x1,y1), P> = (%2, y2) two points on the curve

» The chord-and-tangent rules lead to addition law

formulae : for example we have P; + P, = (x3, y3) where
—Y2=n p = AX2"yex

xp—x1" xo—x1 )
X3 =\ — X1 — Xa, y3=—Ax3 —V
» These formulae involve divisions
» Over [, a division by 0 means Ps is point at infinity
» Over Z,, a division fails if (x, — x1) is not invertible

» A failure reveals a factor of n!
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Elliptic curve factorization method

Choose E and P = (x,y) € E(Z,)
Let B be a smoothness bound on #E(Z,) for p|n
Compute s =[] p" where p" < B

o=

We have [s]P = 0 = “point at infinity” modulo p

but [s]P # 0 in Z,

5. Try to compute [s](P) : a division by p must occur and
produce an error

6. When a division by some d fails, compute

ged(d, n) # 1
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Elliptic curve factorization method

1. For a random curve, we expect #E(F,) to be +
uniformly distributed in

HE(F,) € [(p+1) 2B, (p+1) + 2,/7]

2. Powersmooth probabilities can be estimated

3. In practice : choose the best bound B
and choose a random curve until the method works

4. In practice, the method is used as subroutine to factor
middle-size integers when log, n ~ 60 — 80 bits

5. Remark : runtime depends on the smallest factor
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Sieving algorithms

» Goal : find x # £1 mod n with x> = 1 mod n
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Sieving algorithms

» Goal : find x # £1 mod n with x> = 1 mod n
» ldea : index calculus

» Search for many relations [] p7 =1 mod n
» Do linear algebra over Z, to deduce a relation

(lef">2 =1mod n
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Sieving algorithms

» Goal : find x # £1 mod n with x> = 1 mod n
» ldea : index calculus

» Search for many relations [] p7 =1 mod n
» Do linear algebra over Z, to deduce a relation

£\ 2
(Hp/) =1modn
» To obtain relations
» Linear sieve : look for a and a + n both smooth
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Sieving algorithms

» Goal : find x # £1 mod n with x> = 1 mod n
» ldea : index calculus

€& _

» Search for many relations [[ p7" = 1 mod n
» Do linear algebra over Z, to deduce a relation

£\ 2
(Hp/) =1modn
» To obtain relations

» Linear sieve : look for a and a + n both smooth
» Quadratic sieve : let r = [\/n], hence r> —n < 2\/n+1.
Look for (r + x)? — n smooth
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General number field sieve (GNFS)

» Best algorithm to date

» Involves smaller factorization problems, usually solved
with other sieves and the elliptic curve method

» Involves large, sparse linear algebra over [F,
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http://eprint.iacr.org/2010/006.pdf

General number field sieve (GNFS)

Best algorithm to date

Involves smaller factorization problems, usually solved
with other sieves and the elliptic curve method
Involves large, sparse linear algebra over I,
Factorization record : 768 bits

Several research teams and a large computing effort

“1024-bit RSA about 1000 times more difficult”
http://eprint.iacr.org/2010/006.pdf
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Some side-channel attacks
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Side-channel attacks

» So far we have assumed the attacker had access to some
public data, and was trying to deduce private data using
mathematical algorithms

» Sometimes, the attacker also got access to some oracle
answering queries

» In practice, the secret data may be on a smart card, and
the attacker may observe the smart card when the
computation is done

» Does this help?
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Reminder : Square-and-Multiply

Let x = 37 o x2'
a +—a;c+ 3o,
for i=1 to n do
a < a?mod p
if x; =1 then
c < ca modp
end if
end for
return ¢

XN a R wn
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Power consumption

Let x be some secret

v

v

Suppose the attacker observes the power consumption of
the smart card during the computation g* mod p

v

Suppose the smart card uses the square-and-multiply
algorithm

» How does this help ?
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Power consumption

(i «IM W 1
e




Power consumption

» A squaring is done at each step, a multiplication occurs
only for odd bits

» The bits of x can be read directly from the power
consumption !

» Could be an RSA private key, or a DH random value,
or. ..
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Countermeasure

» Add “dummy” multiplications to the algorithm
D Let x =00 o X2
d < a:c+a° d+ at~
. for i=1 to n do
a «— a?modp
c <+ c(a')9 mod p
d «+ d(a)' mod p
end for
8: return c¢

—

No g s e

» Additional operations do not change the result but
they will make power consumption look more uniform

ERSITY OF

XFORD Christophe Petit -UCL COMPGA18/COMPM068




Side-channel attacks

» Example of succesfully exploited side-channels
(in academic contexts) : time, power consumption,
electromagnetic radiations, ...

» Do not require to break the maths, but do require some
physical access to the computing device
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Lab and tutorial content
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Lab and tutorial content

» www.keylength.com
» Discrete log and factorization algorithms

» Implementation of BSGS, Pollard's rho, index calculus (in
pairs, each pair focusing on a different algorithm)

» Experimentation on your implementations and comparison
with Sage's routines

» Variants of birthday's paradox
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www.keylength.com

Possible related projects

v

Elliptic curve primality test

v

Index calculus for elliptic curves
MOV reduction

Quasi-polynomial time algorithm of
Barbulescu-Gaudry-Joux-Thomé

v

v
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