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Discrete logarithms

I Given a cyclic group (G , ◦) (written multiplicatively),
a generator g of G and a second element h ∈ G ,
compute k ∈ Z|G | such that g k = h

I Trivial if (G , ◦) = (Fp,+). Why ?

I Recently broken if (G , ◦) = (F∗2n , ∗)
(more generally if characteristic is small)

I Believed to be hard (to different extents) for G = F∗p
and for (well-chosen) elliptic/hyperelliptic curve groups
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Integer factorization

I Given a composite number n, compute its (unique)
factorization n =

∏
peii where pi are prime numbers

I Equivalently (why ?) : compute one non-trivial factor pi
I Trivial if n = pe

I Believed to be hard if n = pq for well-chosen p 6= q
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RSA and Diffie-Hellman

I DLP broken implies Diffie-Hellman broken

I Factorization broken implies RSA broken

I We don’t know whether DH broken implies DLP broken

I We don’t know whether RSA broken implies factorization
broken

I Nevertheless, the best attacks against DH and RSA today
are discrete log and factorization attacks
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Outline

Generic discrete logarithm algorithms

Discrete logarithms over finite fields

Elliptic curve discrete logarithms

Factorization algorithms

Some side-channel attacks

Lab and tutorial content



Christophe Petit -UCL COMPGA18/COMPM068 6

References

I Introduction to Modern Cryptography, Chapter 8
I Algorithmic Cryptanalysis, Chapter 15



Christophe Petit -UCL COMPGA18/COMPM068 7

Outline

Generic discrete logarithm algorithms

Discrete logarithms over finite fields

Elliptic curve discrete logarithms

Factorization algorithms

Some side-channel attacks

Lab and tutorial content



Christophe Petit -UCL COMPGA18/COMPM068 8

Generic attacks

I DLP is trivial in some groups

I DLP seems harder in other groups

I Best attacks in a particular group often rely on
specific properties of the group

I Can we find better groups ?

I How hard can DLP be in the best (hardest) groups ?
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Group isomorphisms

I Any cyclic group (G , ◦) of order n can be seen as (Zn,+)
in the following sense : there exists an invertible map
ϕ : G → Zn such that ∀x , y ∈ G , we have

ϕ(x ◦ y) = ϕ(x) + ϕ(y)

I Remark ϕ does not need to be efficiently computable

I Example : let g of order p − 1 in Z∗p. Can define ϕ as

sending any h ∈ G to ϕ(h) ∈ Zp−1 such that h = gϕ(h).
I Let x ′ = ϕ(x) and y ′ = ϕ(y). We have

ϕ−1(x ′+y ′) = ϕ−1(ϕ(x)+ϕ(y)) = ϕ−1(ϕ(x◦y)) = x◦y = ϕ−1(x ′)◦ϕ−1(y ′)
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DLP in the generic group model

I A DLP instance is generated in (Zn,+), including a
generator g ∈ Zn and another element h = kg ∈ Zn

I A random invertible map θ : Zn → Zn is chosen

I The map defines a group (Zn, ◦) with

x ◦ y = θ
(
θ−1(x) + θ−1(y)

)
I The attacker is NOT given g , h nor θ
I The attacker is given θ(g), θ(h) and access to oracles

I O1 : on input x , y , return θ
(
θ−1(x) + θ−1(y)

)
I O2 : on input x , return θ(−θ−1(x))

I The attacker’s goal is to compute k
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Generic group model

I As θ is random, there is no special property of the group
that can be exploited

I n itself is sometimes hidden, and the attacker just
receives bitstrings instead of Zn elements (the size of n
cannot be hidden)

I Some attacks are generic : they work for any group
This includes exhaustive search, BSGS, Pollard’s rho

I There exist much better attacks for finite fields

I Still no better attack for (well-chosen) elliptic curves
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Exhaustive search

I Given g , h ∈ G do the following

1: k ← 1; h′ ← g
2: if h′ = h then
3: return k
4: else
5: k ← k + 1 ; h′ ← h′g
6: Go to Step 2
7: end if

I Generic algorithm

I Time complexity |G | in the worst case, |G |/2 on average

I Can we do better ?
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Baby step, giant step (BSGS)

I Let h = g k . You want to compute k .

I Let N ′ = d
√
|G |e

I There exist 0 ≤ i , j < N ′ such that k = jN ′ + i

h = g jN′+i ⇔ hg−jN
′

= g i

I Compute LB := {g i |i = 0, . . . ,N ′ − 1}
I Compute LG := {hg−jN′|j = 0, . . . ,N ′ − 1}
I Attack requires time and memory O(

√
|G |)



Christophe Petit -UCL COMPGA18/COMPM068 13

Baby step, giant step (BSGS)

I Let h = g k . You want to compute k .

I Let N ′ = d
√
|G |e

I There exist 0 ≤ i , j < N ′ such that k = jN ′ + i

h = g jN′+i ⇔ hg−jN
′

= g i

I Compute LB := {g i |i = 0, . . . ,N ′ − 1}
I Compute LG := {hg−jN′|j = 0, . . . ,N ′ − 1}
I Attack requires time and memory O(

√
|G |)



Christophe Petit -UCL COMPGA18/COMPM068 13

Baby step, giant step (BSGS)

I Let h = g k . You want to compute k .

I Let N ′ = d
√
|G |e

I There exist 0 ≤ i , j < N ′ such that k = jN ′ + i

h = g jN′+i ⇔ hg−jN
′

= g i

I Compute LB := {g i |i = 0, . . . ,N ′ − 1}
I Compute LG := {hg−jN′|j = 0, . . . ,N ′ − 1}
I Attack requires time and memory O(

√
|G |)



Christophe Petit -UCL COMPGA18/COMPM068 13

Baby step, giant step (BSGS)

I Let h = g k . You want to compute k .

I Let N ′ = d
√
|G |e

I There exist 0 ≤ i , j < N ′ such that k = jN ′ + i

h = g jN′+i ⇔ hg−jN
′

= g i

I Compute LB := {g i |i = 0, . . . ,N ′ − 1}
I Compute LG := {hg−jN′|j = 0, . . . ,N ′ − 1}

I Attack requires time and memory O(
√
|G |)



Christophe Petit -UCL COMPGA18/COMPM068 13

Baby step, giant step (BSGS)

I Let h = g k . You want to compute k .

I Let N ′ = d
√
|G |e

I There exist 0 ≤ i , j < N ′ such that k = jN ′ + i

h = g jN′+i ⇔ hg−jN
′

= g i

I Compute LB := {g i |i = 0, . . . ,N ′ − 1}
I Compute LG := {hg−jN′|j = 0, . . . ,N ′ − 1}
I Attack requires time and memory O(

√
|G |)



Christophe Petit -UCL COMPGA18/COMPM068 14

Birthday paradox

I Suppose there are N2 people in a room. What is the
probability that two people have the same birthday ?

I How many people needed to have a probability larger
than 50% ?

I Answer is 23 :

Pr[all distinct] = 1 · 364

365
· 363

365
· . . . · 365− 22

365
<

1

2
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Birthday paradox

I Suppose you choose N2 elements randomly in a set of N
elements. What is the probability that two elements are
equal ?

I How should N2 be wrt N to have a probability larger than
50% ?

I Answer is O(
√
N) :

Pr[all distinct] = 1 · N − 1

N
· N − 2

N
· . . . · N − N2 + 1

N

≈ e−
1
N · e−

2
N · . . . · e−

N2−1
N

≈ e−
N2(N2−1)

N

Taking N2 ≈
√
N ensures 1− Pr[all distinct] constant
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Pollard’s rho (iterative function)

I Define G1,G2,G3 of about the same size such that
G = G1 ∪ G2 ∪ G3 and Gi ∩ Gj = {}

I Over Z∗p, can choose
G1 = {0, . . . , bp/3c},
G2 = {bp/3c+ 1, . . . , b2p/3c},
G3 = {b2p/3c+ 1, . . . , p − 2}

I Define a function f : G → G such that
f (z) = zg z ∈ G1

f (z) = z2 z ∈ G2

f (z) = zh z ∈ G3

(original definition, other definitions possible)
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Pollard’s rho (intuition)

I Start from g0 := g and apply f
recursively to get gi

I By the way f is defined, we can
keep track of ai , bi such that
gi = g aihbi

I If f is “random enough”, obtain
random elements in G and a
collision after O(

√
|G |) elements

I Collision gives DLP solution
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Pollard’s rho (simplest version)

1: N ← d
√
|G |e

2: a← 1; b ← 0; h̃← g ; L← {(a, b, h̃)}
3: for k ∈ {2, . . . ,N} do
4: if h̃ ∈ G1 then a← a + 1; h̃← h̃g
5: if h̃ ∈ G2 then a← 2a; b ← 2b; h̃← (h̃)2

6: if h̃ ∈ G3 then b ← b + 1; h̃← h̃h
7: L← L ∪ {(a, b, h̃)}
8: end for
9: Find distinct (ai , bi , h̃) ∈ L, i = 1, 2

10: if no such elements then abort
11: return −(a1 − a2)/(b1 − b2) mod |G |
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Pollard’s rho analysis

I Correctness :
I Every (a, b, h̃) in the list satisfies h̃ = gahb

I ga1hb1 = ga2hb2 implies h = g
− a1−a2

b1−b2

I Time and memory costs N ≈
√
|G |

I Good probability of success by birthday’s paradox
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Pollard’s rho (improvement)

I Let (L1, L1 + L2) be the indices of
first collision

I Then (L1 + j , L1 + kL2 + j) also
collide

I For j , k such that L1 + j = kL2,
we have L1 + kL2 + j = 2(L1 + j)

I Now search for (ai , bi , h̃i) and
(a2i , b2i , h̃2i) such that h̃i = h̃2i

I Only requires constant size memory
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Pohlig-Hellman

I Assume |G | = n1n2 and let g a generator of G

I h = g k implies hn1 = (gn1)k

where gn1 generates a subgroup of order n2
I Solving DLP in that subgroup gives k mod n2
I Repeating for each factor and using CRT gives k
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Pohlig-Hellman (example)

I Let G = Z∗13, let g = 2 and let h = 7

I We have |G | = 12 = 22 · 3
I Recover k mod 2 by solving (26)k = 76 mod 13⇔

(−1)k = −1 mod 13⇔ k = 1 mod 2

I Write k = 1 + 2k ′. Recover k mod 4 by solving
(23)1+2k ′ = 73 mod 13⇔ (−1)k

′
= −1 mod 13

⇔ k ′ = 1 mod 2⇔ k = 3 mod 4

I Recover k mod 3 by solving
(24)k = 74 mod 13⇔ (3)k = 9 mod 13⇔ k = 2 mod 3

I Use CRT to deduce k = 11 mod 12
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Prime fields

I (Zp,+, ∗) is a field for any prime p

I This field is often denoted Fp
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Extension fields

I Let f be a polynomial of degree n with coefficients in Fp,
such that f has no factor of degree different than 0 or n

I Consider (K ,+, ∗) where
I K = {all polynomials of degree at most n over Fp }
I + and ∗ are addition and multiplication

modulo the polynomial f

I Then (K ,+, ∗) is a finite field with pn elements

I Example : let f (x) = x2 + x + 1 ∈ F2[x ] then
F4 = F2[x ]/(f (x)F2[x ]) is a finite field with 4 elements
{0, 1, x , x + 1}

I Theorem : any finite field can be constructed this way
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DLP over finite fields

I In fact, DLP over the multiplicative group of finite fields
(DLP over the additive group is easy)

I DLP : given p, n, given g a generator of F∗pn ,
and given h = g k , compute k
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Fields used in cryptography

I F∗p where p is prime : most used, believed to be secure

I F∗pn where p is prime and n is small (typically up to 12) :
used in pairing applications

I F∗2n or F∗3n where n is a product of small primes : should
be avoided (Pohlig-Hellman attack)

I F∗2n or F∗3n for arbitrary n : should now also be avoided,
suggested before 2013 for efficiency reasons

I Remark : typically work over a prime order subgroup
of F∗p or F∗pn , otherwise problems such as decisional
Diffie-Helman are easy
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L notation

LQ(α; c) = exp(c(logQ)α(log logQ)1−α)

I Q is the size of the field

I α = 0⇒ LQ(α; c) = (logQ)c polynomial

I α = 1⇒ LQ(α; c) = Qc exponential

I The constant c has a practical impact
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Some history

I See Joux, Odlyzko, Pierrot. The past, evolving present
and future of discrete logarithms
http:

//www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

http://www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
http://www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Index calculus

I Generic framework to solve discrete logarithm problems,
but some steps are group-specific

I Let g , h a DLP problem

I Define a factor basis F ⊂ G , ensuring F contains a
generator (most elements in G are generators)

I Can assume g ∈ F , otherwise do the following :
I Pick a generator g ′ ∈ F
I Compute a such that g = (g ′)a

I Compute b such that h = (g ′)b

I Compute k = b/a mod |G |
I Remark : size of F will be optimized for efficiency
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Index calculus

I Find about |F| relations between factor basis elements

Rj :
∏
fi∈F

f
ai,j
i = 1

(the algorithm to compute the relations is group-specific)
I Deduce ∑

fi∈F

ai ,j logg fi = 0

or  a1,1 . . . a|F|,1
...

...
a1,|F| . . . a|F|,|F|


 logg f1

...
logg f|F|

 =

0
...
0


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Index calculus

I Use linear algebra to compute all logg fi ,
the discrete logarithms of factor basis elements

I Deduce the discrete logarithm of h
(This part is group-specific and may involve several steps)

I Remarks :
I Relations often involve few elements,

hence linear algebra is sparse
I In some cases, h is included in the factor basis and the

last step is avoided : linear algebra produces logg h
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Example : a naive index calculus for F∗p

I DLP : given g , h ∈ F∗p, find k such that h = g k

I Factor basis made of small primes

FB := {primes pi ≤ B}

I Relation search
I Compute rj := gajhbj for random aj , bj ∈ {1, . . . , p − 1}
I If all factors of rj are ≤ B, we have a relation

gajhbj =
∏
pi∈F

p
ei,j
i

I Linear algebra produces g ahb = 1
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Size of the factor basis

I By the prime number theorem,

|{primes pi ≤ B}| ≈ B

lnB
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Smooth numbers

I A number is B-smooth if all its prime factors are smaller
than B

I Define Ψ(N ,B) = #{B-smooth numbers ≤ N}

I Let u = logN/ logB . We have

Ψ(N ,B) = Nρ(u) + O

(
N

logB

)
I The proportion of smooth numbers is roughly

a function ρ of u = logN/ logB ,

I The Dickman-de Bruijn function ρ satisfies ρ(u) ≈ u−u
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Dickman-de Bruijn function ρ

I The Dickman-de Bruijn function ρ satisfies ρ(u) ≈ u−u

log ρ ≈ −u log u
(picture source : Wikipedia)
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Naive analysis of naive index calculus

I Choose logB ≈ (log p)1/2

I |F| ≈ B/ logB ≈ 2(log p)1/2−(log log p)−1/2 ≈ 2(log p)1/2

I u = log p/ logB ≈ (log p)1/2

I ρ(u) = (log p)−1/2(log p)
1/2 ≈ 2−1/2(log p)

1/2(log log p)

I Number of random trials to get |F| relations is

≈ |F|ρ(u)−1 ≈ 2(1/2+o(1))(log p)1/2(log log p)

I Each trial has polytime complexity in log p
I Linear algebra cost is |F|ω ≈ 2ω(log p)

1/2

I Total cost dominated by relation search

I B ≈ Lp(1/2; c) leads to slighly better cost Lp(1/2; c ′)
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Same algorithm for F∗2n

I DLP : given g , h ∈ F∗2n , find k such that h = g k

I Factor basis made of small “primes”

FB := {irreducible f (X ) ∈ F2[X ]| deg(f ) ≤ B}

I Relation search
I Compute rj := gajhbj for random aj , bj ∈ {1, . . . , p − 1}
I Factor rj ∈ F2[X ] with Berlekamp’s algorithm
I If all factors ∈ FB , we have a relation gahb =

∏
fi∈F f eii

I Linear algebra produces g ahb = 1
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I If all factors ∈ FB , we have a relation gahb =

∏
fi∈F f eii

I Linear algebra produces g ahb = 1
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Coppersmith’s algorithm for F2n

I Idea : reduce factor basis to polynomials of degree n1/3

(vs. n1/2) by ensuring all rj have degree n2/3 (vs. n)

I Remember F2n ≈ F2[x ]/(p(x)) for any irreducible p
Choose p(x) = xn + q(x) where deg q ≤ n2/3

I Remember squaring is linear : (a + b)2 = a2 + b2

I Let k = 2e ≈ n1/3, let d ≈ n1/3

I Let h ≈ n2/3 least integer larger than n/k

I Let r(x) = xhk mod p(x) = q(x)xhk−n

with deg r < k + deg q ≈ n2/3
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Coppersmith’s algorithm for F2n

I Factor basis are elements with degree smaller than d ,
where d smallest integer ≥ n1/3

I Relations will be of the form d(x) = (c(x))k

for c , d smooth, where c constructed in a special way
I Relation search

I Take a(x) and b(x) coprime with degrees d
I Take c(x) = a(x)xh + b(x) degree O(n2/3)
I Take d(x) = (c(x))k mod p
I We have d(x) = r(x)(a(x))k + (b(x))k degree O(n2/3)
I If both c and d are smooth, we get a relation
I Probability O(2−n

1/3−ε)
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Coppersmith’s algorithm for F2n

I Individual logarithms for polynomials of degrees << n
I Let m(x) a polynomial with degree << n
I Choose a(x) and b(x) coprime random such that

m(x)|c(x) = a(x)xh + b(x)
I Let d(x) = (c(x))k mod p(x) as above
I If d and c/m smooth, we can write m in the factor basis

I Individual logarithms
I Involve several steps to write m as a product of smaller

and smaller factors
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Function field sieve and beyond

I Kind of generalization of Coppersmith ; complexity L(1/3)

I Best algorithm in all fields until 2013

I Now quasi-polynomial algorithms for finite fields of
small to medium characteristic

I See Joux, Odlyzko, Pierrot for a recent survey
www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Outline

Generic discrete logarithm algorithms

Discrete logarithms over finite fields

Elliptic curve discrete logarithms

Factorization algorithms

Some side-channel attacks

Lab and tutorial content
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Groups used in cryptography

I Finite fields : avoid small characteristic since 2013,
otherwise subexponential

I Elliptic curves : best attacks are generic ones
for well-chosen families

I Hyperelliptic curves : subexponential for large genus :
only genus 1 (EC) and genus 2 seriously considered
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Elliptic curve cryptography

I 1985 : Koblitz and Miller independently propose to use
elliptic curves in cryptography
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Elliptic curves

y 2 = x3 + Ax + B .
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Elliptic curves

I Strange addition law : adding points on (special) curves

I Originally mathematical recreation

I Central in Wiles’ proof of Fermat’s last theorem
∀n > 2, 6 ∃ non trivial x , y , z ∈ Z s.t. zn = xn + yn

I Introduced to crypto in 1985

I Now they build the strongest cryptosystems !

I Also used for factoring middle-size integers and
primality proving
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“Inverse” of a point

y 2 = x3 + Ax + B .

I Let P := (x , y) be a point of a curve

I Define −P as the symmetric of P by the x-axis, that is
−P := (x ,−y)
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Adding two distinct points

y 2 = x3 + Ax + B .

I Let P := (x1, y1) and Q := (x2, y2) where x1 6= x2
I Draw the line through P and Q
I Call −R the third intersection of this line with the curve
I Define P + Q as the symmetric of −R by the x-axis
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Doubling a point

y 2 = x3 + Ax + B .

I Let P := (x , y)
I Draw the tangent line through P
I Call −R the second intersection of this line with the curve
I Define P + P as the symmetric of −R by the x-axis
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Secant and tangent rules

I Any non vertical line intersects the curve at exactly
three points (counted with multiplicities)
A tangent point is counted twice

I By convention, the point at infinity O
intersects every vertical line
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A group law

I The sum of two points of the curve is a point of the curve
(including the point at infinity)

I The point at infinity is the neutral element

I Any element has an inverse

I Can prove associativity : (P + Q) + R = P + (Q + R)
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Scalar multiplication

y 2 = x3 + Ax + B .

I For k ∈ Z, define

[k](P) := P + P + . . . + P︸ ︷︷ ︸
k times

I If K finite, then for any P ∈ E (K ), there is m ∈ Z such
that [m](P) = O (m is called the order of P)
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Scalar multiplication

kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

pouet
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Elliptic curve discrete logarithm problem (ECDLP)

I Let K be a finite field and let E a curve over K

I Let P ∈ E (K ) with order m

I The function

σ : {0, . . . ,m − 1} → E (K ) : k → [k]P

is bijective

I Computing σ is easy. Inverting σ is know as the
elliptic curve discrete logarithm problem (ECDLP)
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ECDLP even harder than DLP and factoring

I ECDLP is (believed to be) a very hard computational
problem

I Discrete logarithm and integer factorization problems
require numbers as big as 1200 bits when ECDLP is safe
with only 160 bits (→ performance consequences)

I On the other hand, DLP and FP better studied and
understood than ECDLP

I Elliptic curve groups very far from generic ones ;
we might find particular structures to exploit in future
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Reductions to simpler DLP

I Idea : transfer ECDLP to a “simpler” DLP problem
through a group homorphism

I MOV reduction if |G | divides qm − 1
Transfer ECDLP to DLP on Km using pairings

I Polynomial time for anomalous curves
Transfer ECDLP to a p-adic elliptic logarithm if |G | = |K |

I Weil descent for some curves over Fpn

Transfer ECDLP to the Jacobian of a hyperelliptic curve

I Only work for specific families, not the ones
recommended in standards
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Index calculus for ECDLP

I Long-standing challenge : how to define “small elements”
I 2005 : first answer by Semaev

I Factor basis = elements with x-coordinate in a subset
I Computing a relation is reduced to solving some

multivariate polynomial, with additional constraints

I 2008 : attacks by Gaudry and Diem for elliptic curves
over Fpn when n is composite

I 2012 : evidence that ECDLP over F2n is subexponential,
but in practice generic attacks are still better
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Outline

Generic discrete logarithm algorithms

Discrete logarithms over finite fields

Elliptic curve discrete logarithms

Factorization algorithms

Some side-channel attacks

Lab and tutorial content
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Integer factorization

I Given a composite number n, compute its (unique)
factorization n =

∏
peii where pi are prime numbers

I Equivalently : compute one non-trivial factor pi
I We will assume n = pq, where p and q are primes
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Sieving

I Principle : try every prime number up to
√
n

I Expect to do O(n1/2/ log n) trials
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Pollard’s rho

I Idea : find x and y such that gcd(x − y , n) = p
in other words x = y mod p but x 6= y mod n

I Define some “pseudorandom” iteration function f

I Compute iterates xi and x2i
I Simultaneously compute gcd(xi − x2i , n)

I By birthday’s paradox,
xi = x2i mod p after O(p1/2) trials on average, and
xi = x2i mod n after O(n1/2) trials on average

I Hence we succeed after O(p1/2) trials on average
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p − 1 powersmooth

I A number x =
∏

peii is B-powersmooth if peii < B

I Assume p − 1 is B-powersmooth

I If s = product of all peii < B then p − 1|s
then g s = 1 mod p

I We deduce gcd(g s − 1, n) = p

I Can be computed with square-and-multiply algorithm
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Elliptic curve factorization method

I Idea : generalize previous method when
neither p − 1 nor q − 1 are smooth

I The group order #E (Fp) of an elliptic curve can be
smooth even when p − 1 is not !
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Elliptic curve addition law

I Let E : y 2 = x3 + a4x + a6
I Let P1 = (x1, y1), P2 = (x2, y2) two points on the curve

I The chord-and-tangent rules lead to addition law
formulae : for example we have P1 + P2 = (x3, y3) where
λ = y2−y1

x2−x1 , ν = y1x2−y2x1
x2−x1 ,

x3 = λ2 − x1 − x2, y3 = −λx3 − ν

I These formulae involve divisions

I Over Fp, a division by 0 means P3 is point at infinity

I Over Zn, a division fails if (x2 − x1) is not invertible

I A failure reveals a factor of n !
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Elliptic curve factorization method

1. Choose E and P = (x , y) ∈ E (Zn)

2. Let B be a smoothness bound on #E (Zp) for p|n
3. Compute s =

∏
peii where peii ≤ B

4. We have [s]P = 0 = “point at infinity” modulo p
but [s]P 6= 0 in Zn

5. Try to compute [s](P) : a division by p must occur and
produce an error

6. When a division by some d fails, compute

gcd(d , n) 6= 1
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Elliptic curve factorization method

1. For a random curve, we expect #E (Fp) to be ±
uniformly distributed in

#E (Fp) ∈ [(p + 1)− 2
√
p, (p + 1) + 2

√
p]

2. Powersmooth probabilities can be estimated

3. In practice : choose the best bound B
and choose a random curve until the method works

4. In practice, the method is used as subroutine to factor
middle-size integers when log2 n ≈ 60− 80 bits

5. Remark : runtime depends on the smallest factor
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Sieving algorithms

I Goal : find x 6= ±1 mod n with x2 = 1 mod n

I Idea : index calculus
I Search for many relations

∏
peii = 1 mod n

I Do linear algebra over Z2 to deduce a relation(∏
pfii

)2
= 1 mod n

I To obtain relations
I Linear sieve : look for a and a + n both smooth
I Quadratic sieve : let r = d

√
ne, hence r2 − n < 2

√
n + 1.

Look for (r + x)2 − n smooth
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General number field sieve (GNFS)

I Best algorithm to date

I Involves smaller factorization problems, usually solved
with other sieves and the elliptic curve method

I Involves large, sparse linear algebra over F2

I Factorization record : 768 bits
Several research teams and a large computing effort

I “1024-bit RSA about 1000 times more difficult”
http://eprint.iacr.org/2010/006.pdf

http://eprint.iacr.org/2010/006.pdf
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Outline

Generic discrete logarithm algorithms

Discrete logarithms over finite fields

Elliptic curve discrete logarithms

Factorization algorithms

Some side-channel attacks

Lab and tutorial content
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Side-channel attacks

I So far we have assumed the attacker had access to some
public data, and was trying to deduce private data using
mathematical algorithms

I Sometimes, the attacker also got access to some oracle
answering queries

I In practice, the secret data may be on a smart card, and
the attacker may observe the smart card when the
computation is done

I Does this help ?



Christophe Petit -UCL COMPGA18/COMPM068 73

Reminder : Square-and-Multiply

1: Let x =
∑n

i=0 xi2
i

2: a′ ← a ; c ← ax0 ;
3: for i=1 to n do
4: a′ ← a′2 mod p
5: if xi = 1 then
6: c ← ca′ mod p
7: end if
8: end for
9: return c
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Power consumption

I Let x be some secret

I Suppose the attacker observes the power consumption of
the smart card during the computation g x mod p

I Suppose the smart card uses the square-and-multiply
algorithm

I How does this help ?
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Power consumption



Christophe Petit -UCL COMPGA18/COMPM068 76

Power consumption

I A squaring is done at each step, a multiplication occurs
only for odd bits

I The bits of x can be read directly from the power
consumption !

I Could be an RSA private key, or a DH random value,
or. . .
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Countermeasure

I Add “dummy” multiplications to the algorithm

1: Let x =
∑n

i=0 xi2
i

2: a′ ← a ; c ← ax0 ; d ← a1−x0

3: for i=1 to n do
4: a′ ← a′2 mod p
5: c ← c(a′)xi mod p
6: d ← d(a′)1−xi mod p
7: end for
8: return c

I Additional operations do not change the result but
they will make power consumption look more uniform
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Side-channel attacks

I Example of succesfully exploited side-channels
(in academic contexts) : time, power consumption,
electromagnetic radiations, . . .

I Do not require to break the maths, but do require some
physical access to the computing device
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Lab and tutorial content

I www.keylength.com

I Discrete log and factorization algorithms

I Implementation of BSGS, Pollard’s rho, index calculus (in
pairs, each pair focusing on a different algorithm)

I Experimentation on your implementations and comparison
with Sage’s routines

I Variants of birthday’s paradox

www.keylength.com
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Possible related projects

I Elliptic curve primality test

I Index calculus for elliptic curves

I MOV reduction

I Quasi-polynomial time algorithm of
Barbulescu-Gaudry-Joux-Thomé
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